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Abstract

Kesterite Cu,ZnSn(S,Se;_,)4 (CZTSSe) semiconductor materials have been extensively studied over
the past decade, however despite significant efforts, the open circuit voltage remains below 60% of the
theoretical maximum. Understanding the optical and electrical properties is critical to explaining and
solving the voltage deficit. This review aims to summarize the present knowledge of optical and
electrical properties of kesterites and specifically focuses on experimental data of intrinsic defects,
charge carrier density and transport, and minority carrier lifetime and related rate-limiting
recombination mechanisms. It concludes with suggestions for further investigation of the electrical
and optical properties of kesterite materials.

1. Introduction

The high interest in kesterite Cu,ZnSn(S,Se; )4 (CZTSSe) absorber materials for thin film solar cells is a result of
ahigh absorption coefficient of ~10* cm ™", the opportunity for band gap tuning in the range of 1-1.5 €V, as well
as from the earth-abundant and non-toxic nature of the constituent elements [ 1]. However, despite a growing
research body, the open circuit voltage (Vo) characteristics of the best kesterite solar cells remain at only 60% of
the maximum achievable value under the terrestrial solar spectrum. Carrier recombination in the bulk and a
high recombination rate at the absorber-buffer interface are considered as the main sources of the large V¢
deficit. The bulk recombination involves the extended band tail states, and deep intrinsic defect levels which
result in strong non-radiative recombination evidenced by the low luminescence yield and short minority
carrier lifetime in kesterite materials [2-5].

Itis known, that CZTSSe crystallizes in the disordered kesterite structure, where the 2d -Wyckoff positions
of the (001) cationic planes are randomly occupied by Cu and Zn atoms [6, 7]. While theoretical calculations by
Chen et al [8] find the lowest formation energy for the kesterite crystal structure, cation disorder is present in
CZTSSe due to the low energy difference between the stannite- and kesterite-related structures. It has been
suggested that the Cu-Zn disorder in Cu,ZnSnS, (CZTS) follows a second order phase transition with a critical
temperature of ~260 °C for CZTS, which was first observed and introduced to describe the modifications in the
Raman spectra of CZTS annealed at different temperatures [9]. A similar phenomenon has also been found in
Cu,ZnSnSe, (CZTSe), with a critical temperature of 200 °C [10], where the measured increase in band gap is
explained by thermally induced ordering of Cu and Zn cations. While the remarkable effect of the order—
disorder transition on the band gap and vibrational spectra is explained by Vineyard’s theory [11], the disorder
parameter itself is not experimentally determined in the probed samples. A recent direct comparison between
resonant x-ray diffraction and photoluminescence (PL) data in CZTSe has confirmed a relationship between the
Cu-Zn disorder and the band gap modification [12]. A change in the order parameter from 0 to 0.7 leads to a
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significant increase in the band gap on the order of ~0.11 eV and ~0.20 eV for CZTSe and CZTS,
respectively [10, 13].

The absorption coefficient for CZTS and CZTSe is about ~2-3 x 10*cm ™ 'at 1.6eVandat 1.1 eV,
respectively, as determined by the normal reflectance and transmittance [2, 13] spectroscopic ellipsometry (SE)
[14—16] and external quantum efficiency [17] methods. In the recent review by Choi et al [ 18] the main
theoretical and experimental results on the energy band structure and SE data were discussed and summarized.
Recently, Zamulko et al [19] re-examined first principle theory at different levels in order to improve the
description of the electronic structure and optical properties of CZTSSe. Nishiwaki et al [20] performed density
functional calculation to study absorption band tail of the kesterites. In particular, a theoretical estimate for the
tail energy of ~30 meV for both CZTS and CZTSe was obtained. It was suggested that quite large Urbach
energies (~85 meV) observed in some experiments [13] could arise from the extensive cation disordering.
However, unlike the band gap modifications, the band tailing of the absorption edge is not affected by Cu-Zn
disorder at least for the probed range of the ordering parameter [2, 13, 21, 22]. The same applies also for the V¢
deficiency which is very insensitive to the Cu-Zn disorder [10, 21, 23].

Although hundreds of publications discuss the optical and electronic properties, which are essential to
understand and solve the voltage deficit in kesterites, disagreement on carrier lifetimes, mobilities and the nature
of the bandtails still exists. This report reviews the optical and electrical properties of kesterites based on a wide
cross-section of experimental reports and is split into four sections. In the first part of this article, a review on the
intrinsic defects in kesterites is given. The second part of the paper focuses on the determination of the minority
carrier lifetime in kesterites and the rate-limiting recombination mechanism behind it. The third summarizes
the present knowledge of the charge carrier transport in the kesterites. Finally, based on the critical overview of
the current experimental data of the electrical and optical properties of kesterites that may limit continued
device improvements, a summary of the state-of-knowledge on this topic is given.

2. Intrinsic defects in kesterites

Experimental and theoretical studies of kesterites have identified intrinsic point defects and associated band
tailing as the key limiting factors behind the large Vo deficit [3, 24-26]. PL and admittance spectroscopy (AS)
are the most used experimental methods to study defects in kesterites. PL studies have shown that most of the
kesterite materials show properties that are typical for highly doped and compensated semiconductors [2, 5,
27-29]. In kesterites, the high doping originates from the very high concentration of charged intrinsic defects
(>10°° cm ™ ") that cause widening of the defect levels within the forbidden gap and induce the spatial potential
fluctuations and formation of band tails. In a p-type material and in the case of a small effective mass for
electrons, like in kesterites, radiative recombination can mainly arise from four different channels: band- to-tail
recombination (BT), that comprises a free electron and a hole that is localised in the valence band tail; band-to-
band recombination (BB), that involves a free electron and a free hole, band-to-impurity (BI) recombination
that involves an acceptor state that is deep enough not to overlap with the valence band tail, and donor—acceptor
pair (DAP) recombination that involves an acceptor and a donor state that are deep enough not to overlap with
the corresponding band tails. All these recombination pathways have been detected in the PL studies of
kesterites. In addition to the spatial electrostatic potential fluctuations, detrimental band gap fluctuations due to
the structural Cu-Zn disorder and compositional inhomogeneities are present in kesterites, reducing the Vo of
the corresponding solar cell devices. One should be aware that the characteristic length of bandgap fluctuations
can exceed the typical size of the potential well caused by electrostatic potential fluctuations, allowing
localization of electrons in potential minima of the conduction band edge. Typical schematic presentation of a
band structure involving both electrostatic and band gap fluctuations is presented in figure 1. Bandgap and
electrostatic potential fluctuations contribute to the band tails with a resulting average depth of fluctuations -y
that is a combination of both: 4% = 'yé + 72, where g and v correspond to the average depth of electrostatic
potential and bandgap fluctuations, respectively (see figure 1) [30]. These fluctuations usually determine the
asymmetric shape of PL bands, where the shape of the low energy side of the PL spectra is determined by the
density of states function. In kesterite samples, «y values in the range v ~ 25-80 meV were found [2, 3, 5, 29,
31-35]. Typical low-temperature measurements for kesterites show a broad peak with increasing width and
assymmetry for higher sulfur concentrations as shown in figure 2(a). Figure 2(b) presents a strong dependence of
the PL peak emission energy on excitation power commonly observed in kesterites, which is a clear indicator of
potential or band gap fluctuations.

There are few publications where very shallow defect levels in CZTSe were measured [36, 37], but a vast
majority of PL bands measured in kesterites are further away from the band gap and show an asymmetric and
quite wide shape (full width at half maximum >100 meV). In most cases, the dominant recombination is related
to the Bl transition where free electrons recombine with holes captured by deep acceptor levels. Also band to tail
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Figure 1. Schematic presentation of the band structure of a semiconductor involving electrostatic and band gap fluctuations. Here, v
and 7 correspond to the average depth of electrostatic potential and bandgap fluctuations, respectively.
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Figure 2. (a) Typical low-temperature PL spectra of Cu,ZnSn(S,Se; _,) with x varying from 0 to 1 [32], and (b) typical strong excitation
power dependence of the PL band in kesterites. (a) Reprinted from [32], Copyright (2011), with permission from Elsevier.

(BT) and band to band (BB) processes have been detected in kesterites [38—42]. In addition, the quasi donor—
acceptor pair recombination model is proposed in numerous publications [5, 41, 43, 44]. The word ‘quast’ is
used to indicate the deviation from the classical DAP model due to interactions between defects. In the case of
deep enough acceptor and donor defect levels a different recombination process is possible—deep donor-deep
acceptor (DD-DA) pair recombination. DD-DA recombination was detected in many chalcopyrite compounds
[45-47] and recently also in CZTS [48].

Theoretical calculations [24, 49] have predicted a low formation energy of several defect clusters in kesterites
which may cause a highly localized reduction of the bandgap energy. These defect clusters are likely to be
detrimental to device performance, and their presence has been suggested as the dominant recombination
pathway for CZTS using low temperature PL [50].

AS, capacitance—voltage, and drive level capacitance profiling (DLCP) have been applied on kesterite
semiconductors for the determination of defect transition levels as well as the quantification of deep defects and
the doping density (N4 ,).

Figure 3 shows typical admittance data of a Cu,ZnSnSe 4Sg ¢ kesterite solar cell with ~9% efficiency [51]. At
low temperatures the capacitance approaches the geometric capacitance due to freeze-out of mobile carriers in
the absorber. With increasing temperature two distinct capacitance steps are observed. In the case of a classical
semiconductor the first step in the capacitance is interpreted with the dielectric turn-on due to shallow dopants,
leveling at the capacitance given by the space-charge region. Capacitance steps occuring at higher temperatures
are commonly interpreted as deep defects [5]. In kesterites, this first step is typically observed at significantly
higher temperatures than in related semiconductor materials such as Cu(In,Ga)Se;, [52]. This has been explained
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Figure 3. (a) Typical CZTSSe admittance data of a 9% efficient CZTSSe solar cell grown by solution processing [51] (b) Arrhenius plots
and activation energies exctracted from capacitance steps in (a).

with alarge series resistance in kesterites at low temperatures arising from either too deep acceptors [53] or a
barrier at the back contact [54]. A high series resistance alone, even if temperature independent, could lead to a
capacitance step due to circuit response if an inadequate equivalent circuit model is used [55], emphasizing the
need to use appropriate models to analyze admittance measurements [5, 56, 57]. In the literature no complete
agreement on this phenomenon is found, e.g. in [58] it was found that the series resistance and the first
capacitance step have similar activation energies varying between 20 and 100 meV depending on the kesterite’s
annealing conditions, while in [5] it was found that the activation energies were different. In some cases two
overlapping steps at low temperature can be observed [58, 59], which however cannot be distinguished in the
measurement shown in figure 3(a). Distinguishing multiple steps at low temperature may require deconvolution
techniques [58] and can also be strongly influenced by the measurement conditions, i.e. light exposure or carrier
injection [59]. The second capacitance step seen in figure 3(a) associated with deep defects has been found to
depend on material parameters, such as composition [51] and annealing conditions [21]. Therefore, it is difficult
to generalize results found in literature, and all these parameters and conditions have to be taken into account.
Energy levels of intrinsic defects in kesterites determined by AS method are summarized in table 1, mostly
reporting activation energies >50 meV. This is consistent with the large formation energy of shallow copper
vacancies predicted by DFT in kesterite, which suggest the deeper Cuy, antisite to be the dominant hole
donating acceptor level and also a higher carrier-freeze out temperature.

In order to determine the free charge carrier density from admittance measurements or capacitance—voltage
profiling, the measurement conditions (temperature and frequency) should be chosen such that the space charge
capacitance but not the capacitance due to deep defects is evaluated. Most authors interpret the capacitance
above the first step (grey shading in figure 3(a)) as the space charge capacitance [5, 21, 53, 58, 60]. Thus for
kesterites, typical measurement conditions to obtain the free carrier density range from (200 K, 1 kHz used in
[58]) to (300 K, 100 kHz, used in [51]), which according to figure 3 is expected to yield identical results. Please
note that if this first capacitance step would be due to a barrier, the capacitance—voltage profiling with
parameters targeting at this plateau still give the correct carrier density, while the space charge region would be
slightly overestimated, due to the effect of the barrier [52]. Frequency-dependent capacitance—voltage profiles
performed at room-temperature often yield a strong dispersion for kesterites, which indicates that deep defects
may be present and respond in the capacitance measurement at lower frequencies [51]. A comparison of the
free-carrier densities deduced from capacitance—voltage profiling under different measurement conditions are
reported in table S1 (supplementary information available online at stacks.iop.org/JPENERGY/1/044002/
mmedia), and (selectively) plotted together with Hall effect results in figure 5 of section 4 further below.

An overview of the defect levels in kesterite materials determined by PL and admittance measurements as
well as from the photoconductivity (¢ (T)), photocapacitance (TPC) and surface photovoltage (SPV)
measurements, is given in table 1. In most publications defect levels deduced from either PL or AS methods are
reported, while in [5] a defect level diagram for the solid solution Cu,ZnSnS,Se;_, with (0 < x < 1)was
constructed from combined PL and admittance measurements. This study proposed the presence of a shallow
defect and a deep defect with relatively constant transition levels on an absolute scale, but varying with respect to
the valence band edge, because of the upward shift of the valence band maximum with increasing selenium
content [5].

According to first-principles calculations the antisite defect Cuy,, has the lowest formation energy and it
contributes the most to the p-type conductivity in the stoichiometric kesterites CZTS and CZTSe [24]. The
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Table 1. Experimentally determined energy levels of intrinsic defects in kesterites.

Material S/(S + Se) Energy level (meV) Proposed defect Method References
CZTSe Ey + 27 PL [37]
Ey + 69 PL [61]
Veu PL [62]
Ey + 63 Zng,
Ey + 69 Cuzn PL [56]
Ey + 75 Cug, AS
Ey + 90 Cuz, PL [63]
Ey + 63 Zng,
Ey + 13 PL [36]
Ey + 27
Ec—7
Ey + 63 PL [64]
Ey + 88
Ey + 40 PL [44]
Ey + 80
Ey + 140 Cugz, AS [65]
Ey + 51 Veu
Ey + 170 AS [66]
Ey + 90 AS [59]
Ey + 157
Ey + 160 Cug, AS [67]
Ey + 120 Cuz, PL,AS [5]
Ey + 480 Cugn; Vsn DLTS [68]
Ec—90 Zncy
Ey + 30 Veu
CZTSSe 0.58 Ey + 120 Cuz, DLTS [68]
0.58 Ey + 320 Cus,
0.36 Ec — 121 Zncy PL [29]
0.28 Ec— 94 Zncy
0.28 Ey + 301 Zng, SPV
0.28 Ec—-91 Zncy
N/A Ey + (130-200) AS [53]
0.02 Ey + 39 Ve Cuzn PL [69]
0.11 By + 63 Vea + Zney

Zng, + 2Znc,

suiysiiand dol
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Table 1. (Continued.)

Material S/(S + Se) Energylevel (meV) Proposed defect Method References
0.35 Ey + 134 Cugz, AS [60]
0.8 Ey + 163 Cuy,

0.6 E, + 170 Cuy, AS [5]
0.6 E, + 530 AS
0.6 E, + 260 Cuy, PL
0.6 Ec — 130 Zncy
0.4 Ec — 140 Zncy PL
0.4 E, + 140 Cuy,
0.4 E, + 500 AS
0.4 E, + 130 Cugz,
CZTS Eyv + 183 Cuz, AS [60]
Ey + 289 Cusg, PL [70]
By + 194 PL [34]
Ey + 62
Ey + 105 Cuy,-Zn; PL [48]
Ey + 125
Ec — 660 Cuy,-Snz, PL [50]
Ey + 20 Veu PL [29]
Ey + 40 PL [71]
Eyv + 290 Cuy, AS [5]
Ec — 140 Zncy AS
By + 230 Cuy, PL
Ev + 40 PL [72]
By + 112 Cuyn PL [73]
By + 132 Cuy, o (T) [74]
Ey + 37 o(T) [75]
By + 45 AS [76]
Ey + 113 Cuzn
Ec— 96 Zncy AS (35]
By + 119 Cuy,
By + 48 PL (7]
By + 185 PL [78]
Ey + 140 Cuyz, PL [79]
By + (276-284) PL [80]
Ey + 40 PL [71]
By + 112 PL [81]
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Table 1. (Continued.)

suiysiiand dol
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Material S/(S + Se) Energy level (meV) Proposed defect Method References
By + 114 Cuyn o (T) (82]
Ey + 300
Ey 4+ 70 Cug, o (T) [83]
By + 221 Van
Ey + 1000 TPC [84]
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Figure 4. Schematic representation of various recombination mechanisms which contribute to the minority carrier lifetime in
kesterites, and their relative impact. 71,y is the trapping/de-trapping time, Ty face is the surface recombination lifetime, 7,4 is the
radiative lifetime in low injection, and 7,,, is the non-radiative lifetime.

highest solar cell efficiencies have been achieved atlow Cu and high Zn compositions which should decrease the
formation of Cuy,, and promote the formation V¢,. The Zn-rich and Cu-poor compositions of CZTS and
CZTSe should also help to avoid the formation of detrimental Sn-related deep defects such as Cugy,, Snc, and
Sny,, and associated defect complexes.

A classification system of kesterites based on stoichiometry has been proposed by Lafond et al [85] and
Gurieva et al [86] and includes 12 types corresponding to various defect complexes necessary to achieve a given
deviation from stoichiometry (i.e. Cupoor + Znrich = [V, + Znc,]). These concepts and the existence of
various stoichiometries modifying defect complexes has been verified via neutron diffraction [86]. Itis
important to emphasize however, that the defect structure depends not only on the elemental composition but
also on the the post-growth cooling process or additional thermal treatments which modify the degree of Cu-Zn
disordering in kesterites [9]. It has been shown that with reduced disordering, there is a change in the dominant
radiative recombination process, involving deeper defects in the case of a less disordered material [34]. This can
be one reason why reduced Cu-Zn disordering does not lead to significant improvement in the device
performance. More systematic defect studies that would correlate the intrinsic defects in kesterites to the device
performance are needed.

3. The minority carrier lifetime in kesterites

The minority carrier lifetime (7) is a critical parameter to evaluate when quantifying absorber quality in
semiconductors. This parameter is a measure of the net recombination rate of minority carriers in a material.
Consequently, 7is directly related to the quasi-fermi level splitting of an absorber and thus the open-circuit
voltage (Vo) of corresponding devices—a parameter of particular concern for kesterites. Therefore,
investigations into the low V¢ in kesterites greatly benefit from (i) accurately determining 7 and (ii)
determining the rate-limiting recombination mechanism which governs .

However, T cannot be directly measured for a given material, requiring extraction from measurements such
as luminescence/photoconductivity/photovoltage decay or quantitative luminescence. For highly defective
materials such as kesterites, complex carrier transport and dynamics as well as high recombination rates make
accurate extraction of T quite challenging. For this reason, early reports of 7 for kesterite materials suggested
reasonably large values between 1 and 20 ns; a comprehensive overview of 7 values reported for kesterites can be
found in [4]. However, recent work indicates that the real minority carrier lifetime in kesterite materials is in the
sub-nanosecond regime [4, 87]. Quantitative PL [4], time-resolved terahertz spectroscopy (TRTS) [87, 88], and
device simulation [4, 89] independently suggest 7 values of a few hundred picoseconds. Therefore, it seems thata
low minority carrier lifetime is a present limit to further advances in kesterite device performance. Presently,
defect recombination in the bulk kesterite material via non-radiative defects is suspected as the culprit for the
high recombination rate/low lifetime [90], illustrated in figure 4. Therefore, developing formation pathways
that reduce defect formation, exploring novel defect passivation schemes, or further advancing cation
replacement strategies are transformative opportunities for the next-generation of high-efficiency kesterite
photovoltaics.
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3.1. Measuring a sub-picosecond lifetime in CZTSSe

To accurately determine the minority carrier lifetime for kesterites, a combination of techniques with consistent
results has been used. This strategy is recommended for such non-ideal or early stage materials where numerous
electron-defect interaction pathways need to be distinguished. Time-resolved photoluminescence (TRPL) is a
common measurement tool used to extract 7, where the characteristic PL decay time is often equated to the
minority carrier lifetime. However, for kesterites several factors have demonstrated that the PL decay time is an
unreliable estimate for the minority carrier lifetime. First, reported PL decays times between 1 and 20 ns
throughout literature do not correlate with the Vo or device efficiency [4]. Second, these reported PL decay
times significantly overestimate the expected device performance if interpreted as the lifetime, considering a
wide range of simulation parameters [4, 89, 91]. The reported PL decay times would result in Vo values at 65%—
75% of the Shockley—Queisser limit (Voc aay) and efficiencies between 14% and 20%. However, corresponding
devices have Voc/ Voo max between 25% and 55% and efficiencies between 1% and 11% [4]. Third, TRPL data
measured on devices—at a wide range of bias voltages—generally show negligible bias voltage dependence and/
or no change when measured on bare absorbers or devices [4]. However, the presence of such an electric field is
expected to have a dramatic effect on the TRPL response time due to charge separation effects. The above
arguments are contrary to theoretical expectations from solid state physics. In addition to this, experimental
TRPL data for kesterites are generally reported over a small decay range due to the low signal associated with this
material (generally around 1 order of magnitude of signal decay), which makes accurate fitting and
interpretation difficult [4]. Furthermore, a limited instrument response function in TRPL measurements can
obscure fitting of decay times below about 1 ns.

Recent work using high-resolution intensity- and temperature-dependent TRPL has shown that the
characteristic PL decay times for kesterites can commonly be attributed to trapping/de-trapping processes in the
material rather than the minority carrier lifetime [4, 92]. Trapping is also observed in TRTS measurements
[88, 93]. The mechanism and defects involved with this minority carrier trapping is an active area of research
[94-97]. Similar results can be expected from photoconductivity decay, photovoltage decay, and related
measurements, which probe the decay of excess carriers. In certain cases, trapping/de-trapping may not
dominate the decay signal of minority carriers and the recombination lifetime may indeed be measured—as
found for CZTS, CZTSe, and CZTSSe single crystals, for example [87, 88, 98]. However, these cases validate the
sub-nanosecond lifetime conclusion for kesterites and alternative high time-resolution measurement
techniques are needed such as TRTS. The effect of trapping in kesterite thin films can be mitigated in
measurements which probe the excess carrier decay through saturation of trap states at elevated excitation
intensities or elevated temperatures during measurement [92, 99], however high time-resolution measurement
techniques would still be needed to extract 7 for kesterites due to fast recombination rates.

As an alternative to carrier decay measurements, the minority carrier lifetime can be extracted from
quantitative luminescence analysis. In this approach, 7is related to the internal PL efficiency (7p. ) following
1pr. = TBpo where B is the radiative recombination coefficient and py is the free carrier density [4]. For kesterites,
relatively low internal PL efficiencies (e.g. npp < 0.01% ) are ubiquitous—even for state-of-the-art absorbers.
Quantitative analysis indicates that a sub-nanosecond lifetime is responsible for the low PL efficiency found in
this material.

3.2. Determining the origin of rate limiting recombination

As Treflects the net recombination of carriers, this parameter can vary widely [100] depending on the origin of
limiting recombination. Therefore, it is important to rule out various loss mechanism to determine where
efforts should be applied to improve 7. For kesterites, various limiting loss mechanisms have been proposed.
First, interface recombination was suggested early on as a significant contributor to the Vo deficit in kesterites
[54,90, 101]. However, the impact of interface recombination may be misinterpreted in kesterites due to the
impact of non-ideal device behavior in data analysis [17, 26]. To achieve a sub-nanosecond recombination
lifetime at the absorber surface (Tsy,f.ce)> @ surface recombination velocity (Sg) greater then about

2 x 10° cm s ' is necessary (Tsurface & thickness/Sg) [102]; however, a positive conduction band offset extends
this range to around 107 cm s~ [89, 91]. For CZTSe and CZTSSe, detailed transport modelling/measurements
[93, 103] estimate surface recombination velocities below 5 x 10*cms™", though values above 10° cms™ ' are
reported for bare absorbers following various surface treatments [ 104]. Exhaustive failure-mode-and-effect-
analysis [90] and device simulations [4, 89, 91, 105] indicate that surface recombination is not the dominant loss
mechanism for CZTSe and CZTSSe absorbers at the current level of device performance. However, surface
losses (i.e. areduced Vo) may manifest in the device structure due to unfavorable buffer-absorber band
alignment—particularly in pure sulfide CZTS, secondary phases at the buffer-absorber interface, interfacial
band gap narrowing, and the absence of charge inversion at hetero-interface [90]. However, these factors are
distinct from the intrinsic surface and bulk recombination lifetimes of the kesterite absorber.
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Figure 5. Carrier density from Hall-effect and capacitance—voltage on single crystal films (x) and polycrystalline films (px) asa
function of Cu/(Zn + Sn) ratio (a), and as a function of S/(S + Se) ratio (b). Note that not all of the films have the same Zn/Sn and
Cu/Snratios in (a), and the single crystal samples in (b) have a higher Cu/(Zn + Sn) ratio than the px samples (0.85-0.96).

A general consensus among many kesterite researchers is that limitations in kesterite performance arise from
the bulk absorber rather than from its interfaces [90]. Several mechanisms can be responsible for this. First,
radiative recombination losses can be disregarded, evident from the low PL yield in this material; a low-injection
radiative lifetime (Bp,) of a few hundred nanoseconds can be expected for CZTSe [4]. This leaves non-radiative
losses as a dominant recombination path in the bulk kesterite material. While band tails/potential fluctuations
have been significantly studied and observed in kesterites, their role in non-radiative recombination is not
straightforward. For shallow defect states to efficiently participate in recombination, their energetic position
must lie within the demarcation levels for holes and electrons; shallow defects near the band edges will act as trap
centers while deeper defects can participate in recombination. For kesterites, reports vary for the degree of
potential fluctuations into the energy gap. Early studies suggest a relatively deep penetration of potential
fluctuations into the energy gap which efficiently participate in tunneling-enhanced recombination [17, 26],
while recent work suggest shallow potential fluctuations which are not expected to act as efficient recombination
centers [4]. However, shallow defects have been suggested to significantly enhance non-radiative recombination
through a multistep process [97]. Further work is needed to quantify the role of potential fluctuations/band-
tailing on the minority carrier lifetime in kesterites. Next, grain boundary recombination has been reported to
contribute to bulk recombination of carriers [90]. Lastly, a more traditional non-radiative recombination
mechanism through deep defects in the bulk are expected to play an important role in explaining the significant
non-radiative losses measured in kesterites [90, 95]. A relative comparison of the various loss mechanisms
discussed here-in is illustrated in the energy band diagram shown in figure 4.

4. Charge carrier transport in kesterites

Carrier transport properties including carrier type, density and mobility are of fundamental importance to all
optoelectronic devices. In solar cells, the carrier type (p or n), will determine the device architecture, the majority
carrier density affects recombination lifetime and depletion width, while the carrier mobility, specifically for the
minority carriers, affects diffusion length which significantly impacts current collection. For CZTSSe, a range of
carrier properties have been reported, which may reflect changes in stoichiometry, doping, fabrication method
and sample quality, but may also reflect choice of characterization method.

In figure 5(a) carrier densities obtained from both Hall effect and capacitance—voltage profiling are shown as
afunction of Cu/(Zn + Sn) content. It can be seen that there is a general trend exhibiting an exponential
increase in the carrier density as the Cu/(Zn + Sn) ratio increases linearly. Hall measurements clearly indicate
p-type doping for CZTSSe of various compositions. The general correlation of carrier concentration and Cu
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content is most often ascribed to the dominance of Cuy, antisite defects, which are predicted to have the lowest
formation energy of any defect and provide shallow acceptor states [24]. The defect picture is complicated by
extremely high levels of compensated defect complexes, such as [V, + Znc,], which enable large variations of
stoichiometry without equal levels of free carriers. For stoichiometric material, carrier densities of almost

1 x 10" cm ™ are found. For individual compositions very large deviations can be found, e.g. for the record
IBM device witha Cu/(Zn + Sn) =0.85and S/(S + Se) = 0.25 the carrier densityislow 1 x 10" cm 2 [106],
while measurements on other samples showup to 1 x 10'” cm ™ at the same composition. The data in figure 5
were collected using Hall-effect or capacitance—voltage profiling, which must be performed with distinct sample
configurations, the former on absorber layers without back contact, and the latter on a full device structure.
Despite the different boundary conditions, the overall agreement is seen to be quite good. Individual samples
shown in figure 5(a) may not only vary in copper-content but may also differ somewhat in the Zn/Sn content
and sulfur content, and of course sample processing, sodium content, and possibly more. An important point to
consider is also that compositional analysis is performed using a variety of different methods in different labs,
including inductively coupled plasma mass spectrometry, x-ray fluorescence and energy dispersive x-ray
spectroscopy. In addition to calibration challenges and/or different depth bias, these composition
measurements usually do not distinguish between the kesterite main phase and the sample composition that
includes secondary phases. Thus, similar sample compositions with different secondary phase content may
exhibit significantly different compositions of the kesterite phase, as discussed in detail by Just et al [107, 108].

Figure 5(b) shows the carrier densities for various samples as a function of S/(S + Se) content for Cu-poor
samples. It can be seen that the carrier density varies generally much less than for changing copper content, but
tends to decrease for the polycrystalline films with increasing sulfur content, while it slightly increases with
sulfur content for the single crystals. The fact that the single crystal values are about an order of magnitude
higher and behave different from the polycrystalline films is likely related to the fact the the crystals are near-
stoichiometric, compared to the Cu-poor composition of the polycrystalline films. Again, in this figure good
overall agreement can be found between carrier densities derived from Hall measurements and those from
(room-temperature) capacitance measurements, which indicates that both methods may be reliably applied to
estimate charge carrier densities. Best devices typically contain about 20%—-30% sulfur and are Cu-poor for
which figure 5 would predict a carrier density below 10'® cm >, which indeed has been reported for IBM’s
champion device [106].

Sodium has been found to be instrumental in increasing the carrier density in Cu-poor Cu(In, Ga)Se,, which
is achieved either from diffusion of the soda-lime glass or by NaF precursor layers, or post-deposition treatments
with NaF [109, 110]. The effect of sodium incorporation in CZTSSe has been investigated in several studies on
thin films as well as single crystals [111]. In these studies, the increase in the sodium content is generally found to
increase the carrier density as measured by Hall effect, although in one recent study a systematic decrease of the
carrier density with increasing sodium content was reported [112]. In this study, a NaF layer was deposited and
diffused into the absorber after the CZTSe was grown.

For solar cell applications the charge carrier transport to and from electrodes and within the active
semiconductor layer plays an important role. The transport of carriers can take place either by drift in electric
fields or by diffusion. For both phenomena the carrier mobilities play a decisive role and depending on the type
of material and measurement method used can span a very wide range of values from below 1 cm® V™" s ! for
amorphous semiconductors to several thousand cm” V™' s~ for epitaxial GaAs. Charge carrier mobilities
depend on fundamental material properties such as the band structure, in particular the effective masses of the
conduction band minimum and valence band maximum, carrier-impurity and carrier-phonon scattering as
well as grain boundary scattering, and possible trapping in localized states. Different experimental measurement
techniques can be applied to derive the carrier mobility, such as Hall effect [74, 113—116], Thz spectroscopy
(TRTS) [93, 117-120], or voltage-dependent IQE measurements [17, 121]. In contrast to the good agreement of
different measurement techniques for the estimation of carrier densities, for carrier mobilities the repercussions
of the different required sample geometries often lead to very different results. It is important to stress that the
Hall effect is dominated by majority carrier transport while TRTS measurements capture the sum mobility for
minority and majority carriers. In a solar cells, on the other hand, carrier transport is generally dominated by
minority carriers [93]. In addition, both Hall effect and TRTS are commonly performed on samples without
conducting back contact, however for TRTS it has recently been shown that measurements in reflection
geometry on back contact substrates also lead to very good results [119].

Figure 6 shows the mobilities as derived from Hall effect and Thz absorption on single crystals (x) and
polycrystalline films (px).

Looking at figure 6(a), which displays mobilities as a function of S/(S + Se) content, it is obvious that the
carrier mobilities have a huge range of values from about 0.5 cm® V™' s ' tomore than 100 cm* V~'s ™. A
more detailed inspection reveals that the Hall mobilities for the single crystals agree with the TRTS
measurements on single crystals as well as TRTS on thin films, while the Hall measurements on polycrystalline
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films yield much lower values typically below 1 cm® V™' s ™', This indicates that grain boundary scattering plays
adecisive role in the long-range carrier transport, as TRTS measurements in fact probe intragrain transport on a
scale of about 30 nm, and single crystals per definition do not have grain boundaries. Overall, the TRTS and Hall
measurements on single crystals show a decrease of carrier mobility from pure CZTSe with 140 cm® V™' s ™' to
about 10-40 cm® V' s~ for the pure sulfide. The larger values of the TRTS measurements compared to Hall in
this case can be explained with the fact that Hall measurements probe the majority (hole) mobility and TRTS
probes the hole + electron mobility. The true minority carrier mobility can be estimated by substracting the
x-Hall values from the TRTS-px values, which leads to values slightly smaller than the TRTS values displayed in
figure 6. Majority and minority carrier mobilities have recently been extracted using a new photo-Hall technique
[117], as well as from intensity dependent and excitation wavelength dependent TRTS analysis [93]. In the TRTS
analysis it was found that for a pure CZTSe polycrystalline layer the electron mobility can be estimated at

140 cm? V! s~ " while the hole mobility was significantly lower at about 10 cm* V™' s~ !,

As already mentioned grain boundary scattering is expected to affect the carrier mobility, in particular in the
case of non-vanishing grain boundary potentials. Comparing the Hall effect hole mobilities measured on single
crystals and on polycrystalline thin films in figure 6, we see that grain boundary potentials in kesterites must be
larger than KT in order to explain the difference between these measurements. Whether intra-grain transport or
transport across grain boundaries is limiting in solar cells strongly depends on the device geometry and sample
microstructure i.e. if the grain sizes are large enough (~500 nm) then carrier absorbed in a single grain most
likely do not have to cross a grain boundary in order to reach the pn-junction. On the other hand, for very small-
grained material, grain boundaries may well limit transport processes in the devices.

The effect of Cu-Zn ordering on solar cells has been subject of numerous investigations. Recently, the effect
of the amount of disorder present in CZTSe films on the carrier mobility was investigated by TRTS
measurements [120]. Here it was found that samples with different degrees of Cu-Zn cation ordering showed no
change in the charge carrier mobility, which indicates that the cation-ordering is not the limiting phenomenon
for the charge carrier mobility in kesterite Cu,ZnSn(S,Se;_,)s4.

5. Summary and outlook

The optical and electrical properties of kesterite Cu,ZnSn(S,Se;_,), absorber materials for solar cells have been
extensively studied over the past decade and with the evolution of the performance of the solar cells the
knowledge about the fundamental physical properties of the kesterites has been improved. From the basic
properties, the band structure of kesterite materials has been extensively studied by various experimental
methods. Itis clear by now that there is direct relationship between the Cu-Zn disorder and the band gap energy
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of kesterites, an increase in the band gap of about 110 and 200 meV can be obtained by changing the order
parameter from 0 to 0.7 in CZTSe and CZTS, respectively. On the other hand, several studies have found no clear
correlation between the Cu-Zn disorder and charge carrier mobility as well as the Vo deficit of the solar cells.

The studies of intrinsic defects by different experimental methods have shown the presence of rather deep
defect levels within the band gap of kesterites. In addition to the rather deep defect levels, the bulk
recombination was found to also involve the extended band tail states. The average depth of the band edge
fluctuations was found in the range 25-80 meV. The current understanding is that non-radiative recombination
in the bulk kesterite is behind the overall low luminescence yield of these materials leading to a high
recombination rate and short carrier lifetime in kesterites.

Recent publications which report that the true minority carrier lifetime in kesterites is in the range of a few
hundred picoseconds is of particular concern in improvement of the kesterite solar cell device performance.
Therefore, developing formation pathways which reduce defect formation, exploring novel defect passivation
schemes, or further advancing cation replacement strategies are transformative opportunities for the next-
generation of high-efficiency kesterites photovoltaics. Further work is also needed to quantify the role of band
edge fluctuations and grain boundaries on the minority carrier lifetime in kesterites.

An overview of the charge carrier transport indicates good agreement between the values of the carrier
densities obtained with different characterization techniques despite the fact that they require distinct sample
configurations for the measurements. Different conclusions can be made about the determination of the carrier
mobility values by using different methods. Comparison of the Hall and Thz spectroscopy results from single
crystal and polycrystalline thin film samples indicates that grain boundary scattering plays a decisive role in the
long range carrier transport in kesterites, which however is not expected to limit (perpendicular) intragrain
transport in absorber layers used in typical thin film solar cells.
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