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1. Introduction

The semiconductor Cu2ZnSn(S,Se)4 is one of the most prom-
ising materials for use as the absorber layer in sustainable 
thin-film solar cells. It contains cheap and earth abundant 
elements. Its reported conversion efficiency record exceeds 
12% [1] whereas in the pure selenide version Cu2ZnSnSe4 
(CZTSe) it exceeds 11% [2]. The lattice structure as well as 
the electronic properties of Cu2ZnSn(S,Se)4 are similar to 
those in Cu(In,Ga)Se2 (CIGS) [3–5]. Such a similarity allows 
technological solutions, originally developed for CIGS-based 
solar cells, to be used in CZTSe-based technologies [4].

Intrinsic structural defects, introduced by deviations from 
the ideal stoichiometry, as with CIGS, are held responsible 
for the p-type doping of CZTSe [4, 5]. Although such defects 
influence charge carrier generation and recombination pro-
cesses in CZTSe solar cells very little experimental evidence 

can be found in the literature on the nature of the defects [6–
9]. Understanding the electronic properties in this material is 
mostly based on theoretical studies using density functional 
theory [5, 10] however it is essential to experimentally vali-
date the theoretical findings [4].

Although reported elemental compositions of CZTSe 
absorber layers, used for solar cells, are rather scattered those 
in high-performance devices are concentrated at significant 
deviations from the ideal stoichiometry: copper deficiencies 
([Cu]/[Sn  +  Zn] ratios) as low as 0.8 and zinc excesses ([Zn]/
[Sn] ratios) as high as 1.2 [5, 11]. At such deviations we can 
expect the presence of high populations of defects which is 
hardly compatible with the electrical properties required 
for high efficiency devices. In CIGSe similar paradox is 
resolved by efficient mechanisms of electrical passivation of 
the antisite defect (indium or gallium on copper site, InCu or 
GaCu), which is the main compensating donor in Cu deficient 
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material. This occurs by formation of the neutral defect com-
plexes 2VCu  +  InCu and 2VCu  +  GaCu, and provides an oppor-
tunity to dope CIGS with a shallow acceptor (copper vacancy 
VCu) by shifting the elemental composition towards In or Ga 
excess [12].

Theoretical studies of the possible defect types and their 
formation energies in CZTSe suggest the presence of similar 
mechanisms of charge passivation by the formation of donor-
acceptor complexes [5]. For copper deficient and zinc excess 
compositions the defect complexes VCu  +  ZnCu are expected 
to be formed.

One of the most efficient techniques to study defects in 
semiconductors is photoluminescence (PL) [13]. The quality 
and quantity of the information, gained in such studies, criti-
cally depends on the structural quality of the studied material 
[14]. Therefore studies on the highest quality CZTSe provide 
more information on defects and the electronic properties  
[6, 15]. From the technological point of view it is important to 
examine PL emission in CZTSe with deviations from stoichi-
ometry required for doping absorbers in efficient solar cells. 
Low temperature PL spectra of such films reveal a single 
broad and asymmetrical band attributed to band tail related 
[7, 9, 16] and quasi-donor-acceptor pairs [17] recombination. 
This band usually rapidly quenches with increasing temper-
ature [7] but can be observed up to 180 K in films used as 
absorber layer in solar cells with high conversion efficiency 
[9]. On the other hand room temperature PL spectra in such 
films show an emission band at a spectral energy close to the 
band gap and assigned to a band-to-band transition [18, 19]. 
However no reports on such a band in CZTSe in low tempera-
ture PL spectra or its evolution with temperature can be found 
in the literature.

In this report we present an optical spectroscopy study of 
thin films of CZTSe with copper deficiency and zinc excess 
deposited on glass substrate. Similar CZTSe films, simul-
taneously deposited on Mo/glass substrates, were used as 
absorber layers in solar cells with a conversion efficiency of 
8.1%. Analysis of the excitation intensity dependence and 
evolution of the PL spectra with temperature (from 6 to 300 
K) and comparison of their spectral energies with the band 
gap, determined from absorption spectra, helps to identify the 
recombination mechanism of the dominant emission bands as 
band-to-tail and band-to-band transitions.

2. Experimental details

Thin films of Cu2ZnSnSe4 were synthesised at Northumbria 
University by the selenisation of metallic precursor layers 
deposited using magnetron sputtering of high-purity ele-
mental targets. These precursors were simultaneously depos-
ited on Mo-coated and bare soda-lime glass substrates at room 
temperature and then selenised in selenium vapour following 
a two-step rapid thermal process at 300 °C and 500 °C, for 5 
and 15 min, respectively. Se pellets were used as the chalcogen 
source. More information on the synthesis of compound films 
by selenisation of magnetron deposited multilayer metallic 
precursors can be found in [6, 15].

The CZTSe films on Mo/glass substrates were etched with 
10 wt% KCN solution for 30 s. CdS buffer layers were then 
deposited on them, using a standard chemical bath process. 
Solar cells were fabricated by DC-magnetron deposition of 
ZnO/ZnO:Al transparent front contacts. The principal device 
parameters for mechanically scribed 3  ×  3 mm2 solar cells 
were examined under simulated AM1.5 solar illumination 
(100 mW cm−2, 25 °C): Voc  =  434 mV, Jsc  =  31.2 mA cm−2, 
FF  =  59.6% yielding a conversion efficiency of η  =  8.1%.

The films deposited on glass substrates were characterised 
using a number of techniques.

Their morphology was analysed using a low-vacuum scan-
ning electron microscopy (SEM) and wavelength dispersive 
x-ray (WDX) microanalysis at 5 and 10 keV electron beam 
energy, respectively.

The structural properties and the presence of secondary 
phases were examined by x-ray diffraction (XRD) measure-
ments carried out using a Siemens D-5000 diffractometer in 
the Bragg–Brentano geometry and a Cu K-α radiation source 
(λ  =  0.154 06 nm).

The temperature and excitation intensity dependent PL 
measurements were carried out using a 1 m focal length mon-
ochromator, the unfocused 514 nm line (0.7 mm diameter) of 
a 300 mW Ar+ excitation laser and a closed-cycle helium cry-
ostat. The laser power density on the film was varied from 
2.7 mW cm−2 to 0.13 W cm−2. The PL signal was detected 
by an InGaAs photomultiplier tube in the spectral range from 
0.9 to 1.7 μm. More experimental details of the set up can 
be found in [6, 15]. Optical transmission and reflection meas-
urements were performed at room temperature in the spectral 
range from 600–1800 nm and used to determine the band gap 
at room temperature.

3. Results and discussion

The film average thickness of 1.6 μm can be seen in a cross 
section view of the film shown in figure 1.

The elemental composition (Cu 21.1, Zn 15.1, Sn 13.5 and 
Se 50.3 at.%) demonstrates a copper deficiency over the Sn 

Figure 1. Cross-section view SEM micrograph of the CZTSe film 
on glass substrate.
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and Zn sum [Cu]/[Zn  +  Sn]  =  0.74, excess of zinc over Sn 
[Zn]/[Sn]  =  1.12 and nearly stoichiometric ratio of Se to the 
sum of metals [Se]/[Cu  +  Zn  +  Sn]  =  1.01.

The XRD pattern, shown in figure  2, reveals distinct 
lines of a tetragonal CZTSe lattice structure. No significant 
lines of secondary phases can be seen in the patterns but we 
cannot rule out the presence of ZnSe and Cu2SnSe3 because 
their crystalline structures are quite similar to that of CZTSe 
[4, 16].

Room temperature optical absorption α(hν) is calcu-
lated using transmittance and reflectance spectra shown in 
figure 3(a) [20]. For an allowed direct transition the spectral 
dependence of the absorption coefficient can be calculated as 
α  =  A(hν–Eg)1/2/hν, where A is a constant, e.g. is the optical 
band gap and hν is the photon energy [21]. Figure 3(b) shows 
the room temperature dependence of (αhν)2 on hν.

A band gap of Eg  =  (1.00  ±  0.02) eV is determined by 
extrapolating the linear part of (αhν)2 to the hν axis. This 
value is in a good agreement with e.g.  =  1.01 eV obtained for 
high structural quality CZTSe with excitonic features in the 

PL spectra [6] and suggests a high degree of ordering of Cu 
and Zn on the lattice [22].

PL spectra measured at different excitation laser power 
densities at 6 K are shown in figure 4. Features due to water 
absorption can be seen in the region of 0.9 eV. The spectra are 
dominated by a broad and asymmetric band BT, labelled for 
band tail related recombination, with a maximum at 0.94 eV. 
The high energy side of the BT peak is steeper than the low 
energy one. The BT band shifts with increasing excitation 
intensity at a rate ( j–shift) of 11 meV per decade of intensity 
change. Blue shifts of PL bands with increasing excitation 
power are often used to identify the recombination as being 
due to donor—acceptor pair (DAP) mechanism. However, the 
rate of such a j–shift for a DAP cannot exceed a few meV 
per decade. The significant j–shift, observed for BT, and its 
asymmetric shape at low temperatures are characteristics of 
a band-to-tail recombination mechanism [23, 24]. The full 
width at half maximum (FWHM) of the band is about 80 meV. 
Neither FWHM nor the asymmetric shape changes with exci-
tation intensity. This is due to tails in the electron and hole 
densities of states, at energies below the conduction band Ec, 
or above the valence band Ev, which are formed in highly 
doped semiconductors by spatial potential fluctuations gener-
ated by high concentrations of randomly distributed charged 
defects [25]. A second band at about 1.035 eV, labelled BB, 
and a low intensity high energy tail HT can also be seen in 
figure 4. The integrated PL intensity of the sum of the three 
bands I(P) increases with excitation laser power P as I ~ Pk, 
with a power coefficients of k  ≈  1.2. Values smaller than unity 
suggest a recombination involving a process of carrier locali-
sation at defect levels in the band gap whereas values greater 
than unity suggest excitonic type recombination not involving 
localisation at defect [26]. Therefore the BT and BB bands 
can be attributed to transitions not associated with localisation 

Figure 2. XRD pattern of the film on glass substrate.
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Figure 3. (1)—transmittance and (2)—reflectance measured at 
room temperature (a), dependence of (αhν)2 on photon energy  
hν (b).
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at defect. A value of k  ≈  1.6 has been reported for the BB 
and BT bands in the PL spectra of Cu2ZnSnS4 [27]. No exci-
tons can be observed in the PL spectra at high doping level 
of donors because the electron kinetic energy exceeds the 
Coulomb coupling between electrons and holes [23]. Instead 
we can expect a band-to-band recombination of free electrons 
with free holes which can be present as the unresolved BB 
band in the PL spectra.

An evolution of normalised PL spectra measured at tem-
peratures from 6 to 300 K is shown in figure 5 on a linear scale 
to identify the types of radiative recombination mechanisms. 
The dominant BT band quenches at temperatures above 100 K,  
gradually shifting towards lower energies, which indicates 
that it is associated with the valence band tail [23, 24].

The BB band is visible from 6 K. It becomes clearly 
resolved at 74 K and its intensity remains significant up to 
room temperature. With temperature increase the BB band 
shifts towards lower energies as seen in figure  5. The BT 
and BB bands in the PL spectra have also been reported for 
Cu2ZnSnS4 [27, 28].

A semiconductor is highly doped if the average distance 
between defects is smaller than their Bohr radii, causing the 
wave-functions of these defects to overlap [25]. Theoretical 
estimates for CZTSe give the density of state (DOS) hole 
mass m*h  =  0.21m0, where m0 is the free electron mass, which 
is significantly heavier than that of the electron m*e  =  0.08m0 
[10]. Thus the condition of high doping is easier to satisfy for 
donors whereas heavy holes can be treated as classical par-
ticles. In ternary and quaternary chalcopyrite single crystals 
[24, 29] and thin films [30, 31], as well as in the kesterites 
[7], the condition of high doping is assumed to be satisfied for 

electrons and not satisfied for holes. At low temperatures holes 
are localised at deep hydrogenic states of the valence band tail 
acting like acceptor levels. A PL emission band at 0.94 eV has 
been reported previously for CZTSe [7, 9] and attributed to 
valence band tail related transitions. An energy diagram with 
band-to-tail (BT) recombination of free electrons with holes 
localised at deep valence band tail states, and band-to-band 
(BB) recombination is shown in figure 6 for a semiconductor 
with spatial potential fluctuations and the condition of high 
doping satisfied for donors.

The BT band is broad and has a characteristic asymmet-
rical shape. The low-energy side of the band is defined by the 
density of state function of the valence band tail ρv(ε) [23, 32]. 
A good approximation of such a density of states is ρv(ε) ~ 
exp(−ε/γ0) [23], where γ0 is the average depth of the potential 
energy fluctuations. The low energy side depends neither on 
temperature nor on excitation intensity, as shown in figures 4 
and 5. The high energy side of the band has a more complex 
nature [23].

It becomes gentler with increase in temperature making 
the band shape more symmetrical and Gaussian like [24]. The 
PL spectra at different temperatures were fitted with three 
Gaussians, corresponding to the BT (near 0.928 eV) and BB 
(near 1.035 eV) bands as well as a band HT (at 1.121 eV). The 
fit at 74 K is shown in figure 7. The maxima of the bands and 
the high energy slopes of the fit are well matched to the spec-
trum which assists the analysis temperature dependencies of 
the BB and BT band spectral positions as shown in figure 8. 
These positions are not affected by mismatch of the fit on the 
low energy side. The BT peak gradually shifts to lower ener-
gies with increasing temperature up to 70 K. The BT band can 
be assigned to a recombination of free electrons with holes 
localised at deep valence band tail states as shown in figure 6. 
At low temperatures free holes are captured at localised tail 
states. They have a low probability of being released and a 
higher probability of recombining with free electrons.

Once the temperature increases shallower states begin 
releasing the holes whereas those at deeper states stay local-
ised causing the observed red shift of the BT recombination 
[23, 24]. At this stage of analysis however we cannot rule out 
the band-to-impurity (BI) recombination, where free electrons 
recombine with holes localised at acceptors with ionisation 
energy greater than γ0. In materials with spatial potential 

Figure 5. Normalised linear scale dependence of the PL spectra on 
temperature from 6 to 300 K and shifted for clarity.
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fluctuations BI also has the characteristic asymmetric shape 
and red shifts at rising temperature as well as a significant blue 
shift at increasing excitation intensity [23, 29].

Arrhenius analysis of the temperature dependence of the 
integrated intensity of the BT band after subtraction of the BB 
and HT bands, is shown in figure 9. The best fit, shown by the 
line, is achieved for one recombination channel assuming a 
temperature dependent capture cross section for the localised 
holes [33]:

I T I T T E k T/ 1 A A exp / ,a0 1
3/2

2
3/2

B( ) ( ( ))= + + − (1)

where I0 is the band intensity at the lowest temperature, A1 
and A2 are process rate parameters and kB is the Boltzmann 
constant. An activation energy Ea of (13  ±  1) meV is deter-
mined. A valence band tail related transition can be described 
by effective ionisation energy of those acceptor-like states 
which define the radiative recombination.

In the case of band-to-tail type recombination Ea is a frac-
tion of γ0. An average tail depth of γ0   =   37 meV is estimated 
from the low energy slope of the BT band PL spectrum at 6 K 

[23, 24]. The value of Ea is smaller than γ0 suggesting that the 
BT band is more likely to be a band-to-tail type recombination 
than BI.

The low intensity HT band can probably be related to 
defects of a secondary phases which can be formed at Zn 
excess conditions [16, 34]. The HT intensity becomes signifi-
cant at higher temperatures when the BT band quenches.

The temperature dependence of the BB band, shown in 
figure 8, demonstrates a decrease of the spectral energy from 
1.035 eV at 74 K to about 1 eV at room temperature. This 
closely matches the e.g. from the absorption experiments so 
we can consider the BB temperature dependence to follow 
that of the band gap. The observed 35 meV temperature red 
shift is close to that of 40 meV observed for excitonic grade 
CZTSe over a slightly greater temperature change from 4 to 
300 K [15] but greater than the 20 meV derived from spectro-
scopic ellipsometry spectra of a film with lower Cu deficiency 
and Zn excess [35].

The high intensity of PL in general and the appearance of 
the BB transition in a material with copper deficiency and zinc 
excess at temperatures from 6 to 300 K suggest that despite 
the presence of band tails, there are low rates of non-radiative 
recombination and scattering on defects and that the structural 
quality of the thin film is relatively good.

Theoretical studies suggest that the defect complexes 
ZnCu  +  CuZn and VCu  +  ZnCu influence the CZTSe band 
gap in an opposite way, the former decreases Eg whereas the 
latter increases it, which is beneficial for solar cell efficiency  
[5, 36]. Recent nuclear magnetic resonance and Raman spec-
troscopy report suggests that in copper poor and zinc rich 
material VCu  +  ZnCu can restrain the Cu/Zn disorder [37]. The 
proximity of the band gap of 1.00 eV at room temperature to 
that in excitonic grade material with elemental composition 
close to ideal stoichiometry [6] showing no band tail effects in 
the PL spectra can be taken as an indication of a low degree of 
the Cu/Zn disorder. The presence of the band-to-band transi-
tion in the PL spectra from cryogenic to room temperatures 
and the high conversion efficiency (8.1%) of the solar cell 
made of the film, simultaneously deposited on Mo/glass sub-
strate with that examined in this study, can also be an indica-
tion of the low degree of the Cu/Zn disorder.

Figure 7. Fitting of the PL spectrum at 74 K with Gaussians 
representing BT, BB and HT bands.
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4. Conclusions

CZTSe thin films with copper deficiency and zinc excess have 
been fabricated by the group at Northumbria University by the 
selenisation of metallic precursors magnetron deposited on Mo/
glass and bare glass substrates. The films on glass were examined 
by transmission and reflection techniques at room temperature 
and PL spectroscopy at temperatures from 6 to 300 K whereas 
films on Mo/glass were used to produce a solar cell with efficiency 
of 8.1%. Detailed temperature and excitation intensity analysis of 
the PL spectra allows identification of the main recombination 
mechanisms as band-to-tail and band-to-band transitions. The 
latter transition was observed in the spectra from 6 to 300 K.
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