## **Rapid Research Note**

## Deep and edge photoluminescence emission of CuInTe<sub>2</sub>

## Andri Jagomägi\*, Jüri Krustok, Jaan Raudoja, Maarja Grossberg, and Mati Danilson

Institute of Materials Science, Tallinn Technical University, 5 Ehitajate tee, Tallinn 19086, Estonia

Received 28 April 2003, accepted 12 May 2003 Published online 13 May 2003

PACS 61.72.Ji, 71.55.Ht, 78.55.Hx

Photoluminescence studies of chalcopyrite CuInTe<sub>2</sub> were conducted. Three edge (1.041 eV, 1.030 eV, and 1.019 eV) and two deep level (0.999 eV and 0.957 eV) emission bands were observed at 11 K. The excitation intensity dependence of PL spectra was recorded. As possible band sources one excitonic and four band-to-defect recombination mechanisms are proposed in this paper.

CuInTe<sub>2</sub> (CIT) and other chalcopyrite ternary crystals have recently attracted worldwide interest because of their optimal bandgap (about 1 eV) for photovoltaic conversion devices. Also, they provide high conversion efficiencies at relatively low expense.

Photoluminescence (PL) is an easy-to-use and sensitive probe of defect levels inside forbidden band. However, the most interesting and challenging part is the interpretation of the experimental spectra.

In the present paper we discuss the photoluminescence spectrum of chalcopyrite CuInTe<sub>2</sub>. Previously, Rincón et al. have studied the photoluminescence of CIT crystals in Refs. [1, 2]. In these papers edge and excitonic PL radiation was presented. In addition, we report also the radiative emission of deep recombination centres.

The CuInTe<sub>2</sub> powder samples were synthesised from the elements at 810 °C in fused quartz ampoules. The treatment continued with homogenising annealing at 665 °C, which is slightly lower than the peritectic temperature in CuInTe<sub>2</sub> [3]. The starting Cu/In concentration ratio was 1.03. The final polycrystal-line CuInTe<sub>2</sub> ingot showed a well-defined chalcopyrite pattern in the XRD scan.

The sample was cooled inside a closed-cycle He cryostat (T = 8-300 K) and excited with a 441 nm He–Cd laser with maximum output power 40 mW. The PL signal was recorded by using standard lock-in technique, computer-controlled SPM-2 grating monochromator (f = 40 cm) and InGaAs detector. The detected signal was corrected in conformity with grating efficiency and detector sensitivity spectra.

The experimental PL spectrum of a CIT sample at 11 K is presented in Fig. 1. We distinguished five different PL bands – three near the band-edge bands (E<sub>1</sub>, E<sub>2</sub>, and E<sub>3</sub>) and two deep bands (D<sub>1</sub> and D<sub>2</sub>) with their phonon replicas. We found that the replicas appear according to the LO-phonon energy  $\hbar \omega_{LO} = 23.2 \text{ meV}$ . The corresponding peak positions and the possible band origins are presented in Table 1. The results were compared with theoretical calculations of defect levels in CIT [4], where the model of effective mass theory was applied.

We identified that three types of recombination mechanisms governed our bands: excitonic, donor to valence band, and conduction band to acceptor emission. It is known that shallow levels, because of the

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0370-1972/03/23706-00R3 \$ 17.50+.50/0

<sup>&</sup>lt;sup>\*</sup> Corresponding author: e-mail: andri@kiri.ee, Phone: +372 620 3210, Fax: +372 620 2798



expression

R4

$$E_{\rm a} = E_{\rm g} - h v_{\rm max} \,,$$

Fig. 1 PL spectra of CuInTe<sub>2</sub> single crystal at 11 K. Measured PL spectra were fitted using five different peaks and their phonon replicas.

broad amplitude of their wavefunction, tend to form donor-acceptor pairs (DAP). Nevertheless, we cannot attribute DAP emission to near the band-edge emission in CIT. Because of the overlapping of edge emission bands it was difficult to identify their behaviour regarding to excitation power and temperature changes.

The activation energies of relevant defect levels in Table 1 are calculated by using the

$$E_{\rm a} = E_{\rm g} - h v_{\rm max} \,, \tag{1}$$

where  $hv_{\text{max}}$  is the band's peak position and  $E_g$  is the band gap energy. In CIT,  $E_g$  is between 1.02 and 1.06 eV [5]. In our calculations we used the value  $E_g = 1.06$  eV, which is reasonable, because we observe a luminescence intensity up to 1.06 eV.

Edge emission can also be analysed using the relation  $I \sim L^k$  [6, 7], where I is PL band's intensity, L is excitation power, and as a rule k is a factor that is >1 for excitons and  $\leq 1$  for non-excitons. Our fitting proved that k > 1 for E<sub>1</sub>. Accordingly, it is highly probable that band E<sub>1</sub> at  $hv_{max} = 1.041$  eV has an excitonic origin. Presumably, it is not a consequence of emission by one exciton but rather a sum of several excitonic radiations. Moreover, Refs. [1, 2] report excitonic emission in the same region.

Band E<sub>2</sub> at  $hv_{max} = 1.030$  eV is not excitonic, because k < 1 for this band. Its activation energy according to Eq. (1) is 30 meV, which is in good coherence with the theoretical activation energy of a donor level at 26 meV [4]. Its possible physical origin is a telluride vacancy  $V_{Te}^{\bullet}$  or an antisite defect  $In_{Cu}^{\bullet}$  [4].

The exact position of band  $E_3$  was not easy to determine, because it is located between the two more intensive bands E<sub>2</sub> and D<sub>1</sub>. However, the fitting for E<sub>3</sub> showed that  $hv_{max} = 1.019$  eV, which corresponds to  $E_a = 41$  meV. The closest defect level for this is a donor level at 37 meV that is caused by an interstitial defect In.

The deep bands D1 and D2 are most probably radiative emissions between conduction band and an acceptor level. They cannot be DAPs because altering the laser power did not generate any j-shift of these bands (see Fig. 2). The peak D1 is located at 0.999 meV and is close to the theoretical acceptor

PL band possible origins [4]  $h v_{\rm max} \,({\rm eV})$  $E_{\rm a}({\rm meV})$ theoretical [4] experimental E1 1.041 excitons 30 E2 1.030 26  $V_{Te}^{\bullet}$ ,  $In_{Cu}^{\bullet}$ In. E3 1.019 41 37  $V_{Cu}'$ ,  $Te'_{In}$ ,  $Cu'_{Te}$ 0.999 D1 61 70 D2 0.957 103 120  $Te'_i$ ,  $Cu'_{In}$ 

Table 1 Experimental values of PL band positions compared with theoretical calculations. Activation energies were calculated with  $E_g = 1.06$  eV.



Fig. 2 Normalised CuInTe<sub>2</sub> PL spectrum dependence on laser excitation power. It is evident that peaks  $D_1$  and  $D_2$  do not shift with altering excitation power, thus, they do not originate from donor-acceptor pairs.



**Fig. 3** Normalised CuInTe<sub>2</sub> PL spectrum dependence on sample temperature.

state at 70 meV. We observed the same PL band in heavily doped CIT crystal [8]. According to Ref. [4], this band can be caused by copper vacancy  $V'_{Cu}$  or antisite point defects  $Te'_{In}$  or  $Cu'_{Te}$ . The position of peak  $D_2$  ( $E_a = 103 \text{ meV}$ ) is close to the theoretical deep acceptor level that is situated at 120 meV [4]. Most likely, interstitial  $Te'_i$  or antisite defect  $Cu'_{In}$  causes this level. Previously, we observed a deep band with similar properties in the PL spectrum of CuGaTe<sub>2</sub> [9]. To wit, the Huang-Rhys factor of band  $D_2$  is  $S \approx 0.22$  whilst for the deep band in CuGaTe<sub>2</sub> it was 0.29.

The temperature dependence of the PL spectrum of CIT is presented in Fig. 3. In the edge region, the excitonic peak starts to dominate if temperature rises, i.e. bands  $E_2$  and  $E_3$  fade much faster than excitonic  $E_1$ . The red shift of the edge region can be attributed to a decrease of the bandgap with increasing temperature. Deep bands  $D_1$  and  $D_2$  can be observed up to 160 K.

We measured photoluminescence properties of polycrystalline  $CuInTe_2$ . Our spectra prove that edge and deep PL bands can be observed in CIT. More work should be done to investigate the origins and possible fine structure of the PL bands.

Acknowledgement This work was supported by the Estonian Scientific Grant No. 5149.

## References

- [1] C. Rincón, S. M. Wasim, E. Hernández, and G. Bacquet, Mater. Lett. 35, 172 (1998).
- [2] C. Rincón, S. M. Wasim, G. Marín, G. Sánchez Pérez, and G. Bacquet, J. Appl. Phys. 82, 4500 (1997).
- [3] E. I. Rogacheva, Cryst. Res. Technol. **31** (S1), 1 (1996).
- [4] R. Márquez and C. Rincón, Mater. Lett. 40, 66 (1999).
- [5] C. Rincón, S. M. Wasim, and G. Marín, Mater. Lett. 36, 245 (1998).
- [6] T. Taguchi, J. Shirafuji, and Y. Inuishi, phys. stat. sol. (b) 68, 727 (1975).
- [7] T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
- [8] A. Jagomägi, J. Krustok, J. Raudoja, M. Grossberg, M. Danilson, and M. Yakushev, to be published.
- [9] J. Krustok, H. Collan, K. Hjelt, M. Yakushev, A. E. Hill, R. D. Tomlinson, H. Mändar, and H. Neumann, J. Appl. Phys. 83, 7867 (1988).