
Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

1

Table of Contents

Introduction ... 1

1 Queries that are used to detect design flaws... 2

Pattern: Format Comma-Separated Lists ... 3

Pattern: Always Depend on One’s Parent .. 4

Pattern: One Size Fits All .. 4

Pattern: Leave Out the Constraints .. 5

Pattern: Use a Generic Attribute Table .. 7

Pattern: Use Dual-Purpose Foreign Key ... 8

Pattern: Create Multiple Columns .. 9

Pattern: Clone Tables or Columns .. 10

Pattern: Use FLOAT Data Type ... 11

Pattern: Specify Values in the Column Definition .. 12

Pattern: Assume You Must Use Files .. 13

References ... 14

Introduction

This document is the accompanying material to the paper:

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases". SCSS 12.

In this document, we present SQL statements that one can use to detect the occurrences of the SQL

database design antipatterns, which have been described by Karwin [1]. Each such antipattern

describes a particular type of database design flaw. Therefore, the results of the queries in case of a

database point to the possible design flaws of the database.

The statements use the views of the Information Schema and hence the data from the system

catalog of database. Some of the queries also read data from other schemas. The results of the

queries will be ordered by schema name and table name. We have created and tested the

statements based on the PostgreSQL ™ 9.2 database management system (DBMS). The statements

take into account the specifics of the DBMS. Firstly, we have to take the specifics into account in the

search conditions of queries. For instance, we have to bear in mind that PostgreSQL™ sometimes

rewrites Boolean expressions of check constraints and provides some system-defined types that are

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

2

not specified in the SQL standard. In addition, the proposed queries use some

implementation-specific functions, operators, and modules. Moreover, we use the procedural

language PL/pgSQL to write table functions that return a table with zero or more rows and one or

more columns.

1 Queries that are used to detect design flaws

For each pattern, we present its name, short informal description of the detection approaches, and

SQL statements that implement the approaches.

We do not claim that the proposed detection approaches and their accompanying queries are the

only possible approaches to detect the occurrences of the antipatterns by using queries.

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

3

Pattern: Format Comma-Separated Lists

Find all the columns of base tables with the type VARCHAR or TEXT and for each found column c try

to determine, based on the actual values in the column, whether c contains lists of values. One may

try to do it by finding out, whether c contains values that themselves contain separation characters

like “,” or “;”. If c is defined in terms of a domain, the base type of which is VARCHAR or TEXT, then

the function analyses the column as well. The search conditions of the dynamically generated SELECT

statements contain regular expressions.

CREATE OR REPLACE FUNCTION f_check_format_comma_separated_list()

RETURNS TABLE (table_schema VARCHAR(128), table_name VARCHAR(128), column_name

VARCHAR(128)) AS $$

DECLARE

 sql_stmt TEXT;

 cnt BIGINT;

 varchar_columns RECORD;

BEGIN

 RAISE NOTICE 'Detecting possible occurrences of the antipattern "Format

Comma-Separated Lists"';

 FOR varchar_columns IN SELECT c.table_schema, c.table_name, c.column_name

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t USING

(table_schema, table_name) WHERE c.data_type IN ('character varying', 'text') AND

t.table_type='BASE TABLE' ORDER BY c.table_schema, c.table_name LOOP

 table_schema:= varchar_columns.table_schema;

 table_name:= varchar_columns.table_name;

 column_name:= varchar_columns.column_name;

 sql_stmt:='SELECT Count(' || quote_ident(column_name) || ') AS c FROM

' || quote_ident(table_schema) ||'.' || quote_ident(table_name) || ' WHERE '||

quote_ident(column_name) || '~''(.+)([,;]{1}.+)+''';

 EXECUTE sql_stmt INTO cnt;

 IF cnt>0 THEN

 RETURN NEXT;

 END IF;

 END LOOP;

 RAISE NOTICE 'Detection completed';

 RETURN;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER

SET search_path = information_schema, pg_temp;

SELECT * FROM f_check_format_comma_separated_list();

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

4

Pattern: Always Depend on One’s Parent

Find the foreign key constraints where the referencing table and the referenced table are the same.

SELECT DISTINCT rc.constraint_schema AS table_schema, fk_table.table_name,

rc.constraint_name FROM (INFORMATION_SCHEMA.referential_constraints AS rc INNER

JOIN INFORMATION_SCHEMA.key_column_usage AS fk_table

ON (rc.constraint_schema=fk_table.constraint_schema

AND rc.constraint_name=fk_table.constraint_name)) INNER JOIN

INFORMATION_SCHEMA.constraint_table_usage AS pk_table ON

(rc.unique_constraint_schema=pk_table.constraint_schema

AND rc.unique_constraint_name=pk_table.constraint_name)

WHERE fk_table.table_schema=pk_table.table_schema AND

fk_table.table_name=pk_table.table_name

ORDER BY rc.constraint_schema, fk_table.table_name;

Pattern: One Size Fits All

Find base tables, the primary key of which is a simple key that consist of a column with the name id

(the name is case insensitive) and with an exact numeric type: NUMERIC, DECIMAL, SMALLINT,

INTEGER, or BIGINT. The query also detects base tables where the id column is defined in terms of

a domain.

SELECT tc.constraint_schema AS table_schema, tc.table_name

FROM INFORMATION_SCHEMA.table_constraints AS tc

WHERE tc.constraint_type='PRIMARY KEY' AND

(SELECT Count(*) AS cnt

FROM INFORMATION_SCHEMA.constraint_column_usage AS ccu

WHERE ccu.constraint_schema=tc.constraint_schema AND

ccu.constraint_name=tc.constraint_name)=1 AND

'ID'=(SELECT Upper(column_name) AS col

FROM INFORMATION_SCHEMA.constraint_column_usage AS ccu

WHERE ccu.constraint_schema=tc.constraint_schema AND

ccu.constraint_name=tc.constraint_name) AND

(SELECT data_type

FROM INFORMATION_SCHEMA.columns AS c

WHERE tc.constraint_schema=c.table_schema

AND tc.table_name=c.table_name

AND Upper(c.column_name)='ID'

) IN ('smallint','integer', 'bigint', 'numeric', 'decimal')

ORDER BY tc.constraint_schema, tc.table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

5

Pattern: Leave Out the Constraints

Find base tables that do not participate in any referential constraint (as the referenced table or as

the referencing table).

SELECT table_schema, table_name

FROM INFORMATION_SCHEMA.tables

WHERE table_type='BASE TABLE' AND

(table_schema, table_name) NOT IN

(SELECT fk_table.table_schema, fk_table.table_name

FROM INFORMATION_SCHEMA.referential_constraints AS rc INNER JOIN

INFORMATION_SCHEMA.key_column_usage AS fk_table

ON (rc.constraint_schema=fk_table.constraint_schema

AND rc.constraint_name=fk_table.constraint_name)

UNION SELECT pk_table.table_schema, pk_table.table_name

FROM INFORMATION_SCHEMA.referential_constraints AS rc INNER JOIN

INFORMATION_SCHEMA.constraint_table_usage AS pk_table ON

(rc.constraint_schema=pk_table.constraint_schema

AND rc.constraint_name=pk_table.constraint_name))

ORDER BY table_schema, table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

6

Find pairs of columns of different base tables where the names and types of the columns are the

same and there is no referential constraint that connects these columns. In each pair, at least one of

the columns is the primary key column or a unique column of a base table. If x is the referencing

column and y is the referenced column in the referential constraint, then the result does not contain

combination (y, x) as well as (x, y).

SELECT key_columns.table_schema AS primary_table_schema, key_columns.table_name AS

primary_table_name, key_columns.column_name AS primary_column_name,

all_columns.table_schema AS dependent_column_schema, all_columns.table_name AS

dependent_table_name, all_columns.column_name AS dependent_column_name

FROM (SELECT kcu.table_schema, kcu.table_name, kcu.column_name, c.data_type

FROM INFORMATION_SCHEMA.key_column_usage AS kcu INNER JOIN

INFORMATION_SCHEMA.columns AS c

USING (table_schema, table_name, column_name)

WHERE (constraint_schema, constraint_name) IN

(SELECT constraint_schema, constraint_name

FROM INFORMATION_SCHEMA.table_constraints

WHERE constraint_type IN ('PRIMARY KEY','UNIQUE'))) AS key_columns,

(SELECT table_schema, table_name, column_name, data_type

FROM INFORMATION_SCHEMA.columns WHERE

(table_schema, table_name) IN (SELECT table_schema, table_name

FROM INFORMATION_SCHEMA.tables WHERE table_type='BASE TABLE')) AS all_columns

WHERE (key_columns.column_name=all_columns.column_name AND

key_columns.data_type=all_columns.data_type)

AND (NOT (key_columns.table_schema=all_columns.table_schema

AND key_columns.table_name=all_columns.table_name))

EXCEPT

(SELECT kcu_primary.table_schema, kcu_primary.table_name, kcu_primary.column_name,

kcu_dependent.table_schema, kcu_dependent.table_name, kcu_dependent.column_name

FROM INFORMATION_SCHEMA.key_column_usage AS kcu_dependent INNER JOIN

(INFORMATION_SCHEMA.referential_constraints AS rc INNER JOIN

INFORMATION_SCHEMA.key_column_usage AS kcu_primary ON (rc.unique_constraint_schema

=kcu_primary.constraint_schema) AND (rc.unique_constraint_name =

kcu_primary.constraint_name)) ON (kcu_dependent.constraint_schema =

rc.constraint_schema)

AND (kcu_dependent.constraint_name = rc.constraint_name)

UNION

SELECT kcu_dependent.table_schema, kcu_dependent.table_name,

kcu_dependent.column_name,

kcu_primary.table_schema, kcu_primary.table_name, kcu_primary.column_name

FROM INFORMATION_SCHEMA.key_column_usage AS kcu_dependent INNER JOIN

(INFORMATION_SCHEMA.referential_constraints AS rc INNER JOIN

INFORMATION_SCHEMA.key_column_usage AS kcu_primary ON (rc.unique_constraint_schema

=kcu_primary.constraint_schema) AND (rc.unique_constraint_name =

kcu_primary.constraint_name)) ON (kcu_dependent.constraint_schema =

rc.constraint_schema)

AND (kcu_dependent.constraint_name = rc.constraint_name))

ORDER BY primary_table_schema, primary_table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

7

Pattern: Use a Generic Attribute Table

Find the base tables, the name of which contains specific substrings (like “object”) that have been

suggested as the possible table names in case of the design.

SELECT table_schema, table_name

FROM INFORMATION_SCHEMA.tables

WHERE

table_type='BASE TABLE' AND

(table_name LIKE '%object_type%' OR

table_name LIKE '%entity_type%' OR

table_name LIKE '%thing_class%' OR

table_name LIKE '%class%' OR

table_name LIKE '%attribute%' OR

table_name LIKE '%attribute_assignment%' OR

table_name LIKE '%object%' OR

table_name LIKE '%entity%' OR

table_name LIKE '%entities%' OR

table_name LIKE '%thing%' OR

table_name LIKE '%value%' OR

table_name LIKE '%object_attribute%' OR

table_name LIKE '%property%' OR

table_name LIKE '%properties%' OR

table_name LIKE '%relationship%' OR

table_name LIKE '%link%')

ORDER BY table_schema, table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

8

Pattern: Use Dual-Purpose Foreign Key

Find pairs of different columns of the same base table where the names of the columns are similar

(for instance, the Levenshtein distance between the names of the columns is below a certain

threshold. In this query, the Levenshtein distance between the two names should not be bigger than

4), one of the columns has an associated check constraint that limits values in the column, and

another column does not participate in any referential constraint as the referencing column. For this

task, we use the fuzzystrmatch module of PostgreSQL ™ that provides several functions to determine

similarities and distance between strings.

CREATE EXTENSION IF NOT EXISTS fuzzystrmatch;

SELECT table1.table_schema, table1.table_name, table2.column_name AS

polymorphic_column, table1.column_name AS classifier_column

FROM (SELECT table_schema, table_name, column_name

FROM INFORMATION_SCHEMA.constraint_column_usage

WHERE (constraint_schema, constraint_name) IN

(SELECT constraint_schema, constraint_name

FROM INFORMATION_SCHEMA.check_constraints

WHERE check_clause~*'^.+=.*ANY.*[(].*ARRAY[[].+[])].*$')

UNION

SELECT cdu.table_schema, cdu.table_name, cdu.column_name

FROM INFORMATION_SCHEMA.column_domain_usage AS cdu INNER JOIN

INFORMATION_SCHEMA.tables AS t USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE' AND (domain_schema, domain_name) IN

(SELECT domain_schema, domain_name

FROM INFORMATION_SCHEMA.domain_constraints

WHERE (constraint_schema, constraint_name) IN

(SELECT constraint_schema, constraint_name

FROM INFORMATION_SCHEMA.check_constraints

WHERE check_clause~*'^.+=.*ANY.*[(].*ARRAY[[].+[])].*$'))) AS table1,

(SELECT c.table_schema, c.table_name, c.column_name

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE') AS table2

WHERE table1.table_schema=table2.table_schema AND

table1.table_name=table2.table_name

AND table1.column_name<>table2.column_name AND

levenshtein(table1.column_name,table2.column_name)<=4 AND

(table2.table_schema, table2.table_name, table2.column_name) NOT IN (SELECT

kcu_dependent.table_schema, kcu_dependent.table_name, kcu_dependent.column_name

FROM INFORMATION_SCHEMA.key_column_usage AS kcu_dependent

INNER JOIN INFORMATION_SCHEMA.referential_constraints AS rc ON

(kcu_dependent.constraint_schema = rc.constraint_schema) AND

(kcu_dependent.constraint_name = rc.constraint_name))

ORDER BY table1.table_schema, table1.table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

9

Pattern: Create Multiple Columns

Find pairs of different columns of the same base table that have the same type. In addition, after the

removal of numbers from the names of the columns the names must be equal in case of each pair. If

a column is specified in terms of a domain, then the query takes into account the base type of the

domain.

SELECT table1.table_schema AS table_schema, table1.table_name AS table_name,

table1.column_name as column1, table2.column_name AS column2, table1.type AS

data_type

FROM (SELECT c.table_schema, c.table_name, c.column_name, c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS type

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE') AS table1,

(SELECT c.table_schema, c.table_name, c.column_name, c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS type

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE') AS table2

WHERE table1.table_schema=table2.table_schema AND

table1.table_name=table2.table_name AND

table1.column_name<>table2.column_name AND

translate(table1.column_name,'0123456789','')=translate(table2.column_name,'0123456

789','') AND

table1.type=table2.type

ORDER BY table_schema, table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

10

Pattern: Clone Tables or Columns

Clone Tables: Find pairs of different base tables, in case of which both tables have the same ordered

set of pairs of column names and data types. In addition, after the removal of numbers from the

names of the tables the names must be equal in case of each pair. If a column is specified in terms of

a domain, then the query takes into account the base type of the domain.

SELECT table1.table_schema, table1.table_name, table2.table_schema,

table2.table_name

FROM (SELECT table_schema, table_name, string_agg(column_spec, ',') AS columns

FROM (SELECT c.table_schema, c.table_name, c.column_name ||' '|| c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS column_spec

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE'

ORDER BY c.table_schema, c.table_name, c.ordinal_position) AS sq

GROUP BY table_schema, table_name) AS table1,

(SELECT table_schema, table_name, string_agg(column_spec, ',') AS columns

FROM (SELECT c.table_schema, c.table_name, c.column_name ||' '|| c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS column_spec

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE'

ORDER BY c.table_schema, c.table_name, c.ordinal_position) AS sq

GROUP BY table_schema, table_name) AS table2

WHERE table1.columns=table2.columns AND

translate(table1.table_name,'0123456789','')=

translate(table2.table_name,'0123456789','')

AND (NOT(table1.table_schema=table2.table_schema AND

table1.table_name=table2.table_name))

ORDER BY table1.table_schema, table1.table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

11

Clone Columns: Find pairs of different columns of the same base table where the types of the

columns are the same. In addition, after the removal of numbers from the names of the columns the

names must be equal in case of each pair. If a column is specified in terms of a domain, then the

query takes into account the base type of the domain.

SELECT table1.table_schema AS table_schema, table1.table_name AS table_name,

table1.column_name as column1, table2.column_name AS column2, table1.type AS

data_type

FROM (SELECT c.table_schema, c.table_name, c.column_name, c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS type

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE') AS table1,

(SELECT c.table_schema, c.table_name, c.column_name, c.data_type ||

coalesce(c.character_maximum_length::text, c.numeric_precision ||'.'||

c.numeric_scale, '0') AS type

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name)

WHERE t.table_type='BASE TABLE') AS table2

WHERE table1.table_schema=table2.table_schema AND

table1.table_name=table2.table_name AND

table1.column_name<>table2.column_name AND

translate(table1.column_name,'0123456789','')=translate(table2.column_name,'0123456

789','') AND

table1.type=table2.type

ORDER BY table_schema, table_name;

Pattern: Use FLOAT Data Type

Find the columns of base tables, the type of which is an approximate numeric type (FLOAT, REAL,

or DOUBLE PRECISION). The query also detects columns that are defined in terms of a domain,

the base type of which is an approximate numeric type.

SELECT table_schema, table_name, column_name, data_type

FROM INFORMATION_SCHEMA.columns

WHERE data_type IN ('real','float', 'double precision') AND

(table_schema, table_name) IN (SELECT table_schema, table_name

FROM INFORMATION_SCHEMA.tables WHERE table_type='BASE TABLE')

ORDER BY table_schema, table_name, ordinal_position;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

12

Pattern: Specify Values in the Column Definition

Find the columns of base tables, which have a directly associated check constraint that specifies

possible values in the column. In addition, show the name of the check constraint as well as the

check clause of the constraint.

SELECT ccu.table_schema, ccu.table_name, ccu.column_name, ccu.constraint_schema,

ccu.constraint_name, cc.check_clause

FROM INFORMATION_SCHEMA.constraint_column_usage AS ccu INNER JOIN

INFORMATION_SCHEMA.check_constraints AS cc

USING (constraint_schema, constraint_name)

WHERE cc.check_clause~*'^.+=.*ANY.*[(].*ARRAY[[].+[])].*$'

ORDER BY ccu.table_schema, ccu.table_name;

Find the columns of base tables, which have been defined by using a domain, the specification of

which includes a check constraint that specifies possible values in the column. In addition, show the

name of the check constraint as well as the check clause of the constraint. One can use the UNION

operator to merge the results of the two queries.

SELECT cdu.table_schema, cdu.table_name, cdu.column_name, dc.constraint_schema,

dc.constraint_name, cc.check_clause

FROM ((INFORMATION_SCHEMA.column_domain_usage AS cdu INNER JOIN

INFORMATION_SCHEMA.tables AS t USING (table_schema, table_name)) INNER JOIN

INFORMATION_SCHEMA.domain_constraints AS dc

USING (domain_schema, domain_name)) INNER JOIN INFORMATION_SCHEMA.check_constraints

AS cc USING (constraint_schema, constraint_name)

WHERE t.table_type='BASE TABLE' AND

cc.check_clause~*'^.+=.*ANY.*[(].*ARRAY[[].+[])].*$'

ORDER BY cdu.table_schema, cdu.table_name;

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

13

Pattern: Assume You Must Use Files

Find all the columns of base tables with the type VARCHAR or TEXT and for each found column c try

to determine, based on the actual values in the column, whether c contains paths to the files. If c is

defined in terms of a domain, the base type of which is VARCHAR or TEXT, then the function analyses

the column as well. The search conditions of the dynamically generated SELECT statements contain

regular expressions.

CREATE OR REPLACE FUNCTION f_assume_you_must_use_files()

RETURNS TABLE (table_schema VARCHAR(128), table_name VARCHAR(128), column_name

VARCHAR(128)) AS $$

DECLARE

 sql_stmt TEXT;

 cnt BIGINT;

 varchar_columns RECORD;

BEGIN

 RAISE NOTICE 'Detecting possible occurrences of the antipattern "Assume You

Must Use Files"';

 FOR varchar_columns IN SELECT c.table_schema, c.table_name, c.column_name

FROM INFORMATION_SCHEMA.columns AS c INNER JOIN INFORMATION_SCHEMA.tables AS t

USING (table_schema, table_name) WHERE c.data_type IN ('character varying', 'text')

AND t.table_type='BASE TABLE' ORDER BY c.table_schema, c.table_name LOOP

 table_schema:= varchar_columns.table_schema;

 table_name:= varchar_columns.table_name;

 column_name:= varchar_columns.column_name;

 sql_stmt:='SELECT Count(' || quote_ident(column_name) || ') AS c FROM

' || quote_ident(table_schema) ||'.' || quote_ident(table_name) || ' WHERE '||

quote_ident(column_name) || '~''^(?:[a-zA-

Z]\:|\\\\[\w\.]+\\[\w.]+)\\(?:[\w]+\\)*\w([\w.])+$''';

/*The source of the regular expression:
http://stackoverflow.com/questions/6416065/c-sharp-regex-for-file-paths-e-g-c-test-

test-exe*/

 EXECUTE sql_stmt INTO cnt;

 IF cnt>0 THEN

 RETURN NEXT;

 END IF;

 END LOOP;

 RAISE NOTICE 'Detection completed';

 RETURN;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER

SET search_path = information_schema, pg_temp;

SELECT * FROM f_assume_you_must_use_files();

Eessaar, E. "On Query-based Search of Possible Design Flaws of SQL Databases"

14

References

[1] B. Karwin, SQL Antipatterns. Avoiding the Pitfalls of Database Programming, The Pragmatic

Bookshelf, 2010.

