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Abstract. Requirements to software systems, including databases, often change. It 

is tempting to design a database according to very abstracts concepts. The generic 

design, which is called "universal database design", allows us to record all possible 
facts in terms of object types, objects, attributes, attribute values, and relationships. 

This kind of design arguably simplifies the recording of new kinds of facts. 

However, the flexibility comes with a price. Existing studies point mostly to the 
performance problems and complexity of queries. We found twelve different 

problems with this kind of design. In this paper, we present the analysis of the 
advantages and disadvantages of the use of the universal design.  
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Introduction 

Two important properties of the system development methodologies of the Internet 

time are constant time pressure to the developers and vague requirements that often 

change [1]. Database designers must also consider these factors because requirements 

to a database evolve. One tempting solution seems to be the use of a highly generic 

database design that has different names: "Universal Data Model" [2], "The entity-

attribute-value representation with classes and relationships (EAV/CR)" [3], "Generic 

data model" [4], and "vertical design" [5]. However, ease of evolution is not the only 

aspect that we must consider in case of selecting a suitable database design. 

The goal of the paper is to present an analysis of the advantages and disadvantages 

of the use of the universal design. This analysis is based on the experiments and the 

results of a literature review. In our view this kind of analysis is currently missing in 

the research literature. Existing studies consider only few disadvantages of the 

universal design and provide few experimental results. In this paper, we extend the 

work that was started in [6]. We use the concepts of SQL [7] in the paper because 

existing literature about the universal design uses these concepts.  

The rest of the paper is organized as follows. Firstly, we explain the principles of 

the universal design. Secondly, we analyze the advantages and disadvantages of the use 

of this design. Finally, we draw conclusions and point to the future work. 

1. The Universal Design 

The part a) of Figure 1 is pictorial representation of the universal design. The part b) of 

Figure 1 presents an example of the regular design. It is also possible to use a 

combination of these designs. The conceptual data model, which illustrates the regular 



design, is a fragment of the model that is presented in the specification of the 

Transaction Processing Performance Council (TPC) benchmark C (TPC-C) [8].  

The specification of the universal design uses the modeling principle, according to 

which a model should be explicitly divided into operational and knowledge levels [9]. 

"The knowledge level objects define legal configuration of operational level objects." 

[9] Data about an object system is recorded at the operational level in terms of the 

objects, their attributes, and relationships. Entity type Attribute_value has a set of 

attributes, the specification of which has the general form: 

<<data_type_name>>_value data_type_name. These attributes allow us to record 

values that have different types. The amount of these attributes and their data types 

depend on a database system (DBMS) where this database is created. Data at the 

knowledge level determines the legal values that can be associated with an object at the 

operational level. The knowledge level contains data about object types and their 

attributes. Some of the variations of the universal design are:  

 

• The word "object" can be replaced with the words "entity" or "thing". 

•  Hay [2] proposes a many-to-many relationship between Attribute and 

Entity_type and specifies it by using entity type Attribute_assignment. 

• Attribute or Attribute_assignment could have associated entity type 

Legal_value that allows us to specify the legal values of the attributes [2].  

• Attribute could have an attribute or even associated entity type Format in 

order to permit recording of a format for the values of an attribute [2]. 

•  Each supported data type should have exactly one corresponding table for 

recording attribute values with this type according to the EAV/CR approach 

[3]. This is different from the design a) in Figure 1. There is one generic entity 

type Attribute_value that has an attribute for each supported data type. 

• Hay [2] proposes to record the type of each relationship. In addition, it is 

possible to record permissible relationship types between object types at the 

knowledge level. This data determines permitted relationships between objects 

at the operational level. 

 

At first glance, the universal design seems like an easy way to achieve quick 

success. However, it also has many serious problems.  
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Figure 1. Examples of the database designs 



Some authors have pointed to the problems with query complexity [4, 10] and 

query speed [4, 5]. These are not the only problems. It seems that there is a lack of 

consensus about this design and no comprehensive discussion of its shortcomings. 

Developers have tried to use it repeatedly in order to achieve maximum flexibility. 

Systems that use some form of the universal design have to manage large amounts 

of data. Some bioinformatics systems use a database that is designed according to 

EAV/CR approach: (a) Subsystem of system net-TRIAL that helps to manage 

procedures and laboratory results of the clinical trials [11]; (b) SenseLab database for 

recording neuroscience data [12]; (c) System PhD for web-based management of 

phenotype data [13]. System GenMapper that helps scientists to integrate 

heterogeneous molecular-biological annotation data [10] uses database that is designed 

according to Generic Annotation Model that is a variation of the universal data model. 

It contains the source level (knowledge level) and the object level (operational level).  

Some software engineering systems also use the universal design. Bernstein et al. 

[14] describe the Microsoft repository that uses a SQL-based relational DBMS in order 

to provide persistent storage for the different software tools. This database contains 

generic tables Object and Relationship among others. Habela [15] proposes a flattened 

metamodel that resembles the universal data model. Habela [15] envisages that the 

schema of a metadata database could be designed based on this metamodel. Bednárek 

et al. [16] describe the data integration system DataPile that records data in a repository 

that follows the rules of the universal design. 

2. The Analysis 

We decided to perform experiments based on databases that are created based on the 

specification of the TPC-C [8]. Why we decided to use this kind of simulation domain? 

Firstly, it is specified in a well-known benchmark and has therefore probably been 

carefully evaluated. Secondly, the specification provides requirements to the test data. 

Thirdly, the specification is available to public and therefore it is easier to repeat the 

experiments. Fourthly, it is in our view reasonably complex in terms of the amount of 

tables, data types, and integrity constraints. Finally, it is quite generic and represents 

"any industry which must manage, sell, or distribute a product or service" [8]. 

We used the database system (DBMS) PostgreSQL v8.1 [17]. The DBMS was 

installed in the server with the Intel Xeon CPU 2.40GHz processor (with Hyper-

Threading technology) and 1 GB RAM.  

We created tables based on the specifications in Figure 1. We assume that each 

entity type in the conceptual data model (see Figure 1) has a corresponding base table 

(table for short) in a SQL database that is created based on this model. The names of 

the tables are the same as the names of the entity types. For each table of the regular 

design the set of columns and their data types match with those presented in the TPC-

C. Both sets of tables must contain data about the same objects and relationships.  

For generating data, we created in a database user-defined functions that use 

system-defined generators of random values. The data was generated based on the 

requirements to the test data that is specified in the TPC-C. We generated data for the 

tables of the regular design (in the round brackets is the amount of rows): Warehouse 

(2), District (20), Customer (60000), Item (10000), Stock (20000), Order (60000), 

Order_line (599394), and New_order (18000). The amount of rows corresponds mostly 

to the requirements of the TPC-C. The only difference is that tables Item and Stock 



contain 10 times less rows than is advised in the benchmark specification, due to 

restrictions to storage space.  

We loaded all the data from these tables to the tables of the universal design (in the 

round brackets is the amount of rows): Object (767416), Relationship (1376808), and 

Attribute_value (4657166). Tables Object_type (8) and Attribute (63), which are at the 

knowledge level, were populated based on the specification of the regular design. 

2.1. The Advantages of the Universal Design 

It is possible to extend a database without executing DDL (Data Definition Language) 

statements. Instead, a user has to modify data at the knowledge level and the system 

has to execute DML (Data Manipulation Language) statements. Wang et al. [5] claim 

that it is possible to define new attributes (data elements) "without the additional 

programming". Still, experts (and not end users) must perform extension of the 

database because "incorrect metadata will yield a malfunctioning application." [12] 

Question remains – why is this approach better compared to the generation and 

execution of DDL statements by a system based on the instructions of a user? 

These changes do not require corresponding changes in the user interface of an 

application, if there is one to one mapping between the columns in the tables and fields 

in the forms. 

A query for finding all the data about an object has to access only one table 

(Attribute_value). If the attributes of an object type change, then the query does not 

need reprogramming [18]. If an object has attributes with the different types, then more 

than one table has to be accessed in case of the EAV/CR approach. 

If the value of an attribute is missing, then we do not have to use NULL because 

we do not record a row in table Attribute_value. However, there are many reasons why 

the value of an attribute could be missing [19]. It is a useful data that could be recorded 

in a database. Figure 2 presents a conceptual data model of a possible solution to this 

problem in case of the universal design. The external predicate of a table is an informal 

construct that specifies what the data in the table means to a user [19]. The parameters 

of the predicate correspond to the columns. We write the parameters in italics. For 

example, table Missing_value has the simplified external predicate Eq. (1).  

The following rules, which increase the complexity of the system, also have to be 

enforced: (1) If a row r in Object has an associated row in Attribute_value, then r 

cannot have the associated row in Missing_value. (2) If a row in Relationship 

represents a relationship between objects o1 and o2, then there cannot be a row in 

Missing_relationship that represents the missing relationship between o1 and o2.        

(3) The registration of a value of an attribute or a relationship must cause the deletion 

of the corresponding data about missing data.  
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Value of the attribute attribute_id of the object object_id with the type 

object_type_id is missing because of the reason reason_for_missing_id. (1) 

2.2. The Problems of the Universal Design 

We evaluated the designs that are specified in Figure 1 by using some database design 

metrics. Piattini et al. [20] write: "the number of foreign keys in a relational database 

schema is a solid indicator of its complexity". The number of foreign keys is 6 and 8 in 

case of the universal design and the regular design, respectively. It shows that the 

complexity of the universal design is somewhat smaller compared to the complexity of 

the regular design. Piattini et al. [21] write: "the table size metric (TS) is a good 

indicator for the maintainability of a table". In our case all the columns of the tables are 

"simple columns" and hence the table size is the amount of columns in a table. The 

median TS is 3 in case of the universal design and 9.5 in case of the regular design. 

According to this metric the maintainability of the tables of the universal design is 

better compared to the tables of the regular design. Unfortunately, as we see in the next 

sections, these metrics do not take into account all the aspects of database design.  

2.2.1. Database Schema Evolution 

A database that is created according to the universal design may still need schema 

changes in the future because of the data types that are usable in a DBMS. Each data 

type could have a corresponding column in table Attribute_value or even a separate 

table in case of the EAV/CR approach. The set of predefined data types in a DBMS 

may change from release to release. Some of these changes are caused by the changes 

in standards. For example, SQL:1999 introduced the predefined type BOOLEAN [22]. 

SQL:2003 deleted the data types BIT and BIT VARYING [7]. DBMSs, which follow 

the prescriptions of SQL:2003, provide data type constructors and allow database 

designers to create user-defined types. Therefore, a large amount of data types could be 

used in a database. If new requirements stress the need for having an attribute with a 

data type that has no corresponding column in table Attribute_value or no 

corresponding separate table, then the database structure has to be changed. It seems 

reasonable to use the most popular predefined data types at the beginning and gradually 

add support to the data types. The result of the application of this kind of design could 

be the use of the limited amount of simple data types (for example, VARCHAR and 

INTEGER) as column types [18]. For example, the median of the amount of data types 

in case of the examples in [3, 10, 13, 15, 16] is 4. This, on the other hand, limits and 

complicates operations with the data values. An application that uses this database must 

perform type conversions.  

All the data values that otherwise would be part of different tables are now in table 

Attribute_value. A DBMS usually locks a table exclusively in case of changing its 

structure. If someone changes the structure of Attribute_value, then it locks a very large 

portion of a database. Therefore, all the schema changes have to be done at the times, 

when the use of the entire database is as minimal as possible. Corruption of a database 

table or its indexes has far greater consequences compared to the regular design.  



2.2.2. Expressiveness of a Database Schema 

External predicates of tables do not give any information about the object system, the 

data of which is recorded in a database. For example, table Attribute_value could have 

the following external predicate Eq. (2). The exact predicate depends on the used types. 

The object object_id with the type object_type_id has an associated value of the 

attribute attribute_id, which is either an integer value int_value, or string value 

with the length between 0 and 2 characters string_value_2, or string value with 

the length of more than 2 characters text_value, or timestamp value 

timestamp_value, or Boolean value boolean_value. (2) 

We need a special tool in order to present database conceptual schema based on 

the data at the knowledge level [12]. 

2.2.3. Integrity Constraints 

It is more difficult to enforce constraints to the data values than in case of the regular 

design [18]. For example, the data at the knowledge level could state that an object type 

ot has a mandatory attribute a with the multiplicity "exactly 1". Attribute a has the data 

type d. Therefore, each object o, the type of which is ot, must have exactly one 

associated attribute value v (with type d) that is associated with the attribute a.  

In case of the regular design of a SQL database we can enforce this constraint by 

declaring that a column of a table has NOT NULL constraint. It is more difficult in 

case of the universal design. The SQL standard permits the creation of assertions and 

the use of subqueries in the table CHECK constraints in order to create declarative 

constraints. However, most DBMSs do not support these features [23]. Therefore, 

trigger procedures (triggers) have to be created in order to enforce these rules at the 

database level. These triggers must react to the creation, modification, and deletion of a 

row of Attribute_value. If each data type has a corresponding separate table like in case 

of the EAV/CR approach, then each of these tables must have these triggers. The code 

of trigger procedures that implement a constraint c must ensure that concurrently 

running transactions, which cause the execution of a validation query of c, are 

serialized [24]. In case of the universal design it means locking of the entire table 

Attribute_value. It has bigger impact than in case of the regular design because 

Attribute_value contains data about objects with different types. 

If data changes at the knowledge level, then triggers have to be 

created/altered/dropped as well. This means that the system has to generate and execute 

DDL statements after all. In addition, the system has to check whether the existing data 

violates new rules and in case of violation prohibit the changes at the knowledge level.  

The primary key of table Object is (object_id, object_type_id). Fields that 

correspond to the column object_id of Object contain system-generated identifiers of 

objects. Values of the primary key do not prevent duplication of data about objects. It is 

difficult, if not impossible, to declare that a set of attributes of an object type must have 

unique values in case of the universal design. For example, let us assume that we want 

to enforce the rule that each warehouse must have a unique name. The constraint Eq. 

(3) of Attribute_value does not give the desired result because column text_value 

contains values of many different attributes – for instance, names of districts and last 

names of customers. Last names of customers do not have uniqueness constraint. A 

district and a warehouse could have the same name. 



CONSTRAINT unique_warehouse_name UNIQUE (text_value)  (3) 

Sometimes it is possible to use proprietary solutions in order to solve this problem. 

For example, in PostgreSQL we could use the statement Eq. (4) in order to declare the 

key that consists of one attribute. In this case, val1 is the identifier of attribute w_name 

of object type Warehouse and val2 is the identifier of object type Warehouse.  

CREATE UNIQUE INDEX idx_unique_w_name ON Attribute_value 

(text_value) WHERE attribute_id=val1 AND object_type_id=val2;  (4) 

We note that the SQL standard [7] does not specify indexes and therefore this 

solution is not universal. In this case, we do not declare database constraints that 

belong to the conceptual level of a database, but indexes that are constructs of the 

database internal level. If someone changes the identifiers val1 or val2 (in tables 

Attribute or Object_type), then this index enforces an incorrect rule. The primary keys 

of 6 tables, which are created based on the example of the regular design (part b of 

Figure 1), involve two or more columns. It is not possible to enforce these keys by 

using a unique index. 

A database is "a collection of true propositions" [19]. A DBMS cannot enforce 

truth, but as an approximation, it can check that all the data values are consistent (i.e., 

conform to the integrity constraints) [19]. Not all the consistent propositions are 

correct, but all the correct propositions must be consistent. It is possible that the 

complexity of defining constraints leads to a database with few constraints. Constraint 

checking, if any, is done by an application that uses a database. It is likely that many 

constraints are not checked at all because they need complex queries (see 2.2.6).  

2.2.4. Compensating Actions 

A DBMS can sometimes resolve constraint violations as they arrive by executing a 

compensating action. We have to implement some compensating actions by using 

triggers. For example, if we wish that deletion of an object with the type ot1 (for 

example Order) should cause cascading deletion of all the related objects (see 

Relationship in Figure 1) with the type ot2 (for example, Order_line), then the use of 

"ON DELETE CASCADE" option in the declaration of a foreign key is not enough and 

we have to create a trigger. 

2.2.5. Default Values 

SQL permits the declaration of zero or one default value for a column of a base table. 

This feature is not always usable in case of the universal design. For example, 

attributes ol_quantity of object type Order_line and c_payment_cnt of Customer could 

have the default values 1 and 0, respectively. The values of these attributes are in the 

same column int_value of table Attribute_value in case of the universal design. 

Therefore, we have to use the triggers in order to use the default values. For example, if 

we decide to create one trigger, then it must contain a set of if-then statements, each of 

which specifies the default value of an attribute (see Eq. (5)). Values val3 and val4 are 

the identifiers of attribute ol_quantity and object type Order_line, respectively. 

IF NEW.attribute_id = val3 AND NEW.object_type_id=val4 THEN 

NEW.int_value:=1;  END IF; (5) 



An alternative is to create a separate trigger for each default value. If someone 

specifies new attributes or modifies the existing ones, then the system may have to 

generate and execute DDL statements for creating, replacing, or removing triggers. 

2.2.6. Query Complexity 

Next, we present an informal specification of four queries. (Q1): Find the amount of 

customers whose last name starts with the letter "B". Table 1 presents the SQL code of 

this query in case of the different designs. (Q2): Find the amount of customers whose 

last name starts with the letter "B" and who live in the state of Nebraska. (Q3): Find the 

amount of customers whose last name starts with the letter "B", who live in the state of 

Vermont, and who belong to district, the location of which is also Vermont. (Q4): Find 

the amount of order lines where the price of the associated stock is bigger than 99. 

We selected the queries based on their complexity. Q1 and Q2 use data about one 

type of objects. Q3 and Q4 use data about two and three types of objects, respectively. 

In case of the regular design, the restriction condition of Q1 is a simple predicate that 

involves no connectives and the restriction condition of Q2 is a compound predicate 

that involves one connective. 

Intuitively, we see that the SQL code is more complex in case of the universal 

design. How can we show it formally? Tow [25] proposes a method of tuning SQL 

queries, the part of which is the creation of a query diagram. It is a directed graph that 

represents a query.  In this graph the nodes are table aliases and arcs represent join and 

semijoin operations. We can use the metrics of complexity of a graph [26] in order to 

measure the complexity of a query. We constructed the query diagrams and in case of 

each diagram counted the amount of nodes (N) and the amount of arcs (A). From the 

set of complexity metrics that are introduced by Latva-Koivisto [26] we calculated the 

Coefficient of Network Complexity: CNC=(A*A)/N. The bigger the value is the more 

complex is the graph (query). It is possible to use other complexity metrics as well.  

Based on Table 2 we can conclude that the resolution of the presented problems 

requires more complex queries in case of the universal design than in case of the 

regular design. It is possible to simplify the query-writing task by creating operators 

[10] or viewed tables. However, after performing the view resolution, a DBMS still has 

to execute a complex query even in case of the simple problems. Chen et al. [3] 

propose to use combinations of simpler queries and temporary tables in order to speed 

up the queries. In this case, a user of a database looses an advantage of a DBMS 

according to which a user can make a (complex) query and a DBMS decides how to 

execute it. In this case, a query designer has to describe a procedure how to retrieve the 

desired results. 

 

 

Table 1. Example of queries in case of different database designs. 

Universal design Regular design 

SELECT Count(*) AS amt FROM Attribute_value AS AV INNER JOIN 

(Attribute AS A INNER JOIN Object_type AS OT ON A.object_type_id = 
OT.object_type_id) ON (AV.object_type_id = A.object_type_id) AND 

(AV.attribute_id = A.attribute_id) WHERE OT.name = 'CUSTOMER' 

AND A.name = 'C_LAST' AND AV.text_value  LIKE 'B%'; 

SELECT Count(*) AS amt 

FROM Customer WHERE 
c_last LIKE 'B%'; 

 

 



Table 2. Query complexity. 

 Universal design Regular design 

Query ID N A CNC N A CNC 

Q1 3 2 1.33 1 0 0.00 

Q2 6 5 4.17 1 0 0.00 

Q3 10 9 8.10 2 1 0.50 

Q4 9 8 7.11 3 2 1.33 

 

 

2.2.7. Size of Data  

Chen et al. [3] write: "The EAV/CR representation consumed approximately four times 

the storage of our conventional schema." Conventional schema is created according to 

the regular design.   

Our findings support this conclusion. We analyzed the tables that are specified in 

Section 1 (see Table 3). PostgreSQL provides the system-defined functions 

pg_relation_size that can be used in order to find the disk space (in bytes) used by a 

table [17]. PostgreSQL provides the system-defined function pg_total_relation_size 

that can be used in order to find the total size of a table together with its associated 

indexes and toasted data (in bytes) [17]. Before calculating the size of tables we 

collected statistics and reclaimed storage that was occupied by deleted rows.  

The only indexes that the tables had during the calculation of data size were the B-

tree indexes that were created automatically due to the primary key constraints. Each 

table had the primary key. The primary keys of the tables of the regular design are 

specified in the document of TPC-C [8]. In average, both the tables of the universal 

design and the regular design had 2.4 columns in a primary key. Each index contains 

the values of indexed columns. Therefore, due to large indexes, the difference between 

the sum of table size and the sum of total table size is relatively big. 

Data in the column "Sum of table size" is calculated by summarizing the sizes of 

tables that are found by using pg_relation_size. The sum of sizes of tables of the 

universal design is approximately 4.75 times bigger than the sum of sizes of tables of 

the regular design. Data in the column "Sum of total table size" is calculated by 

summarizing the sizes of tables that are found by using pg_total_relation_size. The 

sum of total sizes of tables of the universal design is approximately 6.01 times bigger 

than the sum of total sizes of tables of the regular design.  

"It is true that EAV/CR is more space-efficient for sparse data." [3] Our test data is 

not sparse. Only 2.4 percent of columns of the tables of the regular design (Figure 1. 

part b) are optional (permit NULLs). 

 

 

Table 3. The size of tables that are created according to the different designs. 

 Sum of table size (in bytes) Sum of total table size (in bytes) 

Universal design 687415296 1083359232 

Regular design 144728064 180404224 



2.2.8. Performance of Database Operations 

Next, we present the results of measurements of the performance of database 

operations in case of the different designs. We performed five times each query (Q1-

Q4) that was specified in Section 2.2.6. In addition, we measured the performance of a 

transaction (RW): Create new order where the amount of order lines is between 5 and 

15. The amount of order lines is randomly selected. 

Each time we measured the time (in milliseconds) that a DBMS needed in order to 

perform the operation and present the results. For each operation, we calculated the 

average time in millisecond (see Table 4) based on these five measurements.  

In case of Q4 the performance was firstly better in case of the universal design. 

However, the performance of the same operation was better in case of the regular 

design (Q4*) after we created a composite index that covers the columns ol_i_id and 

ol_supply_w_id of table Order_line. 

2.2.9. Dependencies Between Database Objects 

Database objects like triggers, declarative constraints, and conditional indexes depend 

on the specifications at the knowledge level in case of the universal design. Data 

changes at this level can cause creation, modification, or removal of these database 

objects. Dependencies between the database objects are automatically recorded in a 

database catalog by a DBMS. A database developer has to explicitly design and 

implement tables for recording the dependencies in case of the universal design. 

2.2.10. Access Control 

SQL provides statements for granting privileges that allow us to perform a given action 

on a specified table or column. Let us assume that: (1) a database contains data about 

objects with types ot1 and ot2; (2) user u1 has right to select and update data that 

correspond to ot1 and does not have rights to use the data that corresponds to ot2.   

It is unreasonable to grant u1 direct access to tables Object and Attribute_value. 

These tables contain data about objects with type ot1 as well as data about objects with 

type ot2. We could create two viewed tables that present data about objects with types 

ot1 and ot2, respectively.  Then we can give u1 rights to use these tables in order to see 

or modify data. In some DBMSs (like PostgreSQL 8.1) it is not possible to modify data 

in base tables through viewed tables without further programming [17].  

 

 

Table 4. Performance test results. 

Operation ID Regular design (ms) Universal design (ms)  

Q1 259,213 877,700 

Q2 260,305 1865,397 

Q3 26,252 654, 364 

Q4 1581,838 599,413 

Q4 * 396,471 599,413 

RW 207,682           327,591            



The result might be that the systems, which use a database that follows the 

universal design, do not use the security mechanisms of a DBMS, in order to restrict 

access to the data. 

2.2.11. Concurrency Control 

Locking is a widely used mechanism for concurrency control by DBMSs. There are 

situations that need special care in case of the universal design. Modification of data 

about an object (its attribute values and relationships) should restrict concurrent 

modification of data about the same object. For example, two users could change data 

of a district concurrently so that one modifies the state and another modifies the city. 

The result could be an incorrect specification of the district. 

In addition, modifications at the knowledge level that influence the operational 

level should restrict concurrent data changes at the operational level. 

If we use the regular design, then it is usually sufficient to rely on locking that is 

automatically performed by a DBMS. On the other hand, in case of the universal 

design we have to use some statements of a database programming language in order to 

explicitly lock the data. Let us assume that we use DBMS PostgreSQL: 

Regular design: If we modify the structure of table District, then a DBMS does not 

allow concurrent modifications (insertions, updates, deletions) of data about districts.  

Universal design: If we modify the data in table Attribute, then the unstandardized 

LOCK statement has to be used. It blocks modifications of data about districts in table 

Attribute_values. However, it blocks modification of attribute values of all the objects. 

2.2.12. User Interface Design 

Marenco et al. [12] write that data in a database that follows the universal design "must 

be transiently converted (‘‘pivoted’’) into a conventional representation through fairly 

elaborate metadata-driven code." [12] It requires "considerable front-end 

programming" [18]. Conventional representation means that each data element is 

presented in the separate field with the meaningful label. 

3. Conclusions 

We identified four advantages and twelve problems of the universal design. Some 

studies suggest that it is easy to extend a database, which is created based on the 

universal design. However, we found that it is difficult to extend this kind of database 

in terms of the use of data types, integrity constraints, and default values. In addition, 

experiments showed us that the use of the universal design causes problems in terms of 

query complexity and performance. Whether or not to use the universal design depends 

on the importance of the different database design aspects in a particular project. The 

results also illustrate the need to extend the existing database design metrics and create 

new metrics because, for instance, they do not consider all the integrity constraints. 

In conclusion, the universal design advocates building a DBMS on top of a DBMS. 

The knowledge level is actually a database catalog – an addition to the one that is 

automatically created by a DBMS. Designers have to work out many ad hoc solutions 

and do redundant work instead of relying on the system-defined features of DBMSs. 

Many features that are present in a DBMS have to be duplicated in the applications. 



The future work must include more experiments based on databases from different 

domains. There is also a need to investigate alternative database designs that can be 

used in order to cope with changing requirements. 
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