
On Universal Database Design

Erki EESSAAR, Marek SOOBIK

Department of Informatics, Tallinn University of Technology, Estonia

Abstract. Requirements to software systems, including databases, often change. It

is tempting to design a database according to very abstracts concepts. The generic

design, which is called "universal database design", allows us to record all possible
facts in terms of object types, objects, attributes, attribute values, and relationships.

This kind of design arguably simplifies the recording of new kinds of facts.

However, the flexibility comes with a price. Existing studies point mostly to the
performance problems and complexity of queries. We found twelve different

problems with this kind of design. In this paper, we present the analysis of the
advantages and disadvantages of the use of the universal design.

Keywords. Database design, data management, universal design, SQL

Introduction

Two important properties of the system development methodologies of the Internet

time are constant time pressure to the developers and vague requirements that often

change [1]. Database designers must also consider these factors because requirements

to a database evolve. One tempting solution seems to be the use of a highly generic

database design that has different names: "Universal Data Model" [2], "The entity-

attribute-value representation with classes and relationships (EAV/CR)" [3], "Generic

data model" [4], and "vertical design" [5]. However, ease of evolution is not the only

aspect that we must consider in case of selecting a suitable database design.

The goal of the paper is to present an analysis of the advantages and disadvantages

of the use of the universal design. This analysis is based on the experiments and the

results of a literature review. In our view this kind of analysis is currently missing in

the research literature. Existing studies consider only few disadvantages of the

universal design and provide few experimental results. In this paper, we extend the

work that was started in [6]. We use the concepts of SQL [7] in the paper because

existing literature about the universal design uses these concepts.

The rest of the paper is organized as follows. Firstly, we explain the principles of

the universal design. Secondly, we analyze the advantages and disadvantages of the use

of this design. Finally, we draw conclusions and point to the future work.

1. The Universal Design

The part a) of Figure 1 is pictorial representation of the universal design. The part b) of

Figure 1 presents an example of the regular design. It is also possible to use a

combination of these designs. The conceptual data model, which illustrates the regular

design, is a fragment of the model that is presented in the specification of the

Transaction Processing Performance Council (TPC) benchmark C (TPC-C) [8].

The specification of the universal design uses the modeling principle, according to

which a model should be explicitly divided into operational and knowledge levels [9].

"The knowledge level objects define legal configuration of operational level objects."

[9] Data about an object system is recorded at the operational level in terms of the

objects, their attributes, and relationships. Entity type Attribute_value has a set of

attributes, the specification of which has the general form:

<<data_type_name>>_value data_type_name. These attributes allow us to record

values that have different types. The amount of these attributes and their data types

depend on a database system (DBMS) where this database is created. Data at the

knowledge level determines the legal values that can be associated with an object at the

operational level. The knowledge level contains data about object types and their

attributes. Some of the variations of the universal design are:

• The word "object" can be replaced with the words "entity" or "thing".

• Hay [2] proposes a many-to-many relationship between Attribute and

Entity_type and specifies it by using entity type Attribute_assignment.

• Attribute or Attribute_assignment could have associated entity type

Legal_value that allows us to specify the legal values of the attributes [2].

• Attribute could have an attribute or even associated entity type Format in

order to permit recording of a format for the values of an attribute [2].

• Each supported data type should have exactly one corresponding table for

recording attribute values with this type according to the EAV/CR approach

[3]. This is different from the design a) in Figure 1. There is one generic entity

type Attribute_value that has an attribute for each supported data type.

• Hay [2] proposes to record the type of each relationship. In addition, it is

possible to record permissible relationship types between object types at the

knowledge level. This data determines permitted relationships between objects

at the operational level.

At first glance, the universal design seems like an easy way to achieve quick

success. However, it also has many serious problems.

Object

Object_type Attribute

Attribute_value

1 0..*
Warehouse District

Stock
Customer

Item Order_line Order

New_order

1

1..3

1

0..1

1
1..*

15..15

1

1..3000
1

1..100000

1

1..*

a) universal design b) regular design

1

0..*

knowledge level

operational level

1 1..10

Relationship

1

0..*

1 0..*1 1

0..*

0..*

Figure 1. Examples of the database designs

Some authors have pointed to the problems with query complexity [4, 10] and

query speed [4, 5]. These are not the only problems. It seems that there is a lack of

consensus about this design and no comprehensive discussion of its shortcomings.

Developers have tried to use it repeatedly in order to achieve maximum flexibility.

Systems that use some form of the universal design have to manage large amounts

of data. Some bioinformatics systems use a database that is designed according to

EAV/CR approach: (a) Subsystem of system net-TRIAL that helps to manage

procedures and laboratory results of the clinical trials [11]; (b) SenseLab database for

recording neuroscience data [12]; (c) System PhD for web-based management of

phenotype data [13]. System GenMapper that helps scientists to integrate

heterogeneous molecular-biological annotation data [10] uses database that is designed

according to Generic Annotation Model that is a variation of the universal data model.

It contains the source level (knowledge level) and the object level (operational level).

Some software engineering systems also use the universal design. Bernstein et al.

[14] describe the Microsoft repository that uses a SQL-based relational DBMS in order

to provide persistent storage for the different software tools. This database contains

generic tables Object and Relationship among others. Habela [15] proposes a flattened

metamodel that resembles the universal data model. Habela [15] envisages that the

schema of a metadata database could be designed based on this metamodel. Bednárek

et al. [16] describe the data integration system DataPile that records data in a repository

that follows the rules of the universal design.

2. The Analysis

We decided to perform experiments based on databases that are created based on the

specification of the TPC-C [8]. Why we decided to use this kind of simulation domain?

Firstly, it is specified in a well-known benchmark and has therefore probably been

carefully evaluated. Secondly, the specification provides requirements to the test data.

Thirdly, the specification is available to public and therefore it is easier to repeat the

experiments. Fourthly, it is in our view reasonably complex in terms of the amount of

tables, data types, and integrity constraints. Finally, it is quite generic and represents

"any industry which must manage, sell, or distribute a product or service" [8].

We used the database system (DBMS) PostgreSQL v8.1 [17]. The DBMS was

installed in the server with the Intel Xeon CPU 2.40GHz processor (with Hyper-

Threading technology) and 1 GB RAM.

We created tables based on the specifications in Figure 1. We assume that each

entity type in the conceptual data model (see Figure 1) has a corresponding base table

(table for short) in a SQL database that is created based on this model. The names of

the tables are the same as the names of the entity types. For each table of the regular

design the set of columns and their data types match with those presented in the TPC-

C. Both sets of tables must contain data about the same objects and relationships.

For generating data, we created in a database user-defined functions that use

system-defined generators of random values. The data was generated based on the

requirements to the test data that is specified in the TPC-C. We generated data for the

tables of the regular design (in the round brackets is the amount of rows): Warehouse

(2), District (20), Customer (60000), Item (10000), Stock (20000), Order (60000),

Order_line (599394), and New_order (18000). The amount of rows corresponds mostly

to the requirements of the TPC-C. The only difference is that tables Item and Stock

contain 10 times less rows than is advised in the benchmark specification, due to

restrictions to storage space.

We loaded all the data from these tables to the tables of the universal design (in the

round brackets is the amount of rows): Object (767416), Relationship (1376808), and

Attribute_value (4657166). Tables Object_type (8) and Attribute (63), which are at the

knowledge level, were populated based on the specification of the regular design.

2.1. The Advantages of the Universal Design

It is possible to extend a database without executing DDL (Data Definition Language)

statements. Instead, a user has to modify data at the knowledge level and the system

has to execute DML (Data Manipulation Language) statements. Wang et al. [5] claim

that it is possible to define new attributes (data elements) "without the additional

programming". Still, experts (and not end users) must perform extension of the

database because "incorrect metadata will yield a malfunctioning application." [12]

Question remains – why is this approach better compared to the generation and

execution of DDL statements by a system based on the instructions of a user?

These changes do not require corresponding changes in the user interface of an

application, if there is one to one mapping between the columns in the tables and fields

in the forms.

A query for finding all the data about an object has to access only one table

(Attribute_value). If the attributes of an object type change, then the query does not

need reprogramming [18]. If an object has attributes with the different types, then more

than one table has to be accessed in case of the EAV/CR approach.

If the value of an attribute is missing, then we do not have to use NULL because

we do not record a row in table Attribute_value. However, there are many reasons why

the value of an attribute could be missing [19]. It is a useful data that could be recorded

in a database. Figure 2 presents a conceptual data model of a possible solution to this

problem in case of the universal design. The external predicate of a table is an informal

construct that specifies what the data in the table means to a user [19]. The parameters

of the predicate correspond to the columns. We write the parameters in italics. For

example, table Missing_value has the simplified external predicate Eq. (1).

The following rules, which increase the complexity of the system, also have to be

enforced: (1) If a row r in Object has an associated row in Attribute_value, then r

cannot have the associated row in Missing_value. (2) If a row in Relationship

represents a relationship between objects o1 and o2, then there cannot be a row in

Missing_relationship that represents the missing relationship between o1 and o2.

(3) The registration of a value of an attribute or a relationship must cause the deletion

of the corresponding data about missing data.

Object

Attribute Missing_value Reason_for_missing1 0..*

1
0..* 10..*

Missing_relationship

1

0..*1 1
0..*

0..*
Figure 2. A possible solution for recording reasons of missing data

Value of the attribute attribute_id of the object object_id with the type

object_type_id is missing because of the reason reason_for_missing_id. (1)

2.2. The Problems of the Universal Design

We evaluated the designs that are specified in Figure 1 by using some database design

metrics. Piattini et al. [20] write: "the number of foreign keys in a relational database

schema is a solid indicator of its complexity". The number of foreign keys is 6 and 8 in

case of the universal design and the regular design, respectively. It shows that the

complexity of the universal design is somewhat smaller compared to the complexity of

the regular design. Piattini et al. [21] write: "the table size metric (TS) is a good

indicator for the maintainability of a table". In our case all the columns of the tables are

"simple columns" and hence the table size is the amount of columns in a table. The

median TS is 3 in case of the universal design and 9.5 in case of the regular design.

According to this metric the maintainability of the tables of the universal design is

better compared to the tables of the regular design. Unfortunately, as we see in the next

sections, these metrics do not take into account all the aspects of database design.

2.2.1. Database Schema Evolution

A database that is created according to the universal design may still need schema

changes in the future because of the data types that are usable in a DBMS. Each data

type could have a corresponding column in table Attribute_value or even a separate

table in case of the EAV/CR approach. The set of predefined data types in a DBMS

may change from release to release. Some of these changes are caused by the changes

in standards. For example, SQL:1999 introduced the predefined type BOOLEAN [22].

SQL:2003 deleted the data types BIT and BIT VARYING [7]. DBMSs, which follow

the prescriptions of SQL:2003, provide data type constructors and allow database

designers to create user-defined types. Therefore, a large amount of data types could be

used in a database. If new requirements stress the need for having an attribute with a

data type that has no corresponding column in table Attribute_value or no

corresponding separate table, then the database structure has to be changed. It seems

reasonable to use the most popular predefined data types at the beginning and gradually

add support to the data types. The result of the application of this kind of design could

be the use of the limited amount of simple data types (for example, VARCHAR and

INTEGER) as column types [18]. For example, the median of the amount of data types

in case of the examples in [3, 10, 13, 15, 16] is 4. This, on the other hand, limits and

complicates operations with the data values. An application that uses this database must

perform type conversions.

All the data values that otherwise would be part of different tables are now in table

Attribute_value. A DBMS usually locks a table exclusively in case of changing its

structure. If someone changes the structure of Attribute_value, then it locks a very large

portion of a database. Therefore, all the schema changes have to be done at the times,

when the use of the entire database is as minimal as possible. Corruption of a database

table or its indexes has far greater consequences compared to the regular design.

2.2.2. Expressiveness of a Database Schema

External predicates of tables do not give any information about the object system, the

data of which is recorded in a database. For example, table Attribute_value could have

the following external predicate Eq. (2). The exact predicate depends on the used types.

The object object_id with the type object_type_id has an associated value of the

attribute attribute_id, which is either an integer value int_value, or string value

with the length between 0 and 2 characters string_value_2, or string value with

the length of more than 2 characters text_value, or timestamp value

timestamp_value, or Boolean value boolean_value. (2)

We need a special tool in order to present database conceptual schema based on

the data at the knowledge level [12].

2.2.3. Integrity Constraints

It is more difficult to enforce constraints to the data values than in case of the regular

design [18]. For example, the data at the knowledge level could state that an object type

ot has a mandatory attribute a with the multiplicity "exactly 1". Attribute a has the data

type d. Therefore, each object o, the type of which is ot, must have exactly one

associated attribute value v (with type d) that is associated with the attribute a.

In case of the regular design of a SQL database we can enforce this constraint by

declaring that a column of a table has NOT NULL constraint. It is more difficult in

case of the universal design. The SQL standard permits the creation of assertions and

the use of subqueries in the table CHECK constraints in order to create declarative

constraints. However, most DBMSs do not support these features [23]. Therefore,

trigger procedures (triggers) have to be created in order to enforce these rules at the

database level. These triggers must react to the creation, modification, and deletion of a

row of Attribute_value. If each data type has a corresponding separate table like in case

of the EAV/CR approach, then each of these tables must have these triggers. The code

of trigger procedures that implement a constraint c must ensure that concurrently

running transactions, which cause the execution of a validation query of c, are

serialized [24]. In case of the universal design it means locking of the entire table

Attribute_value. It has bigger impact than in case of the regular design because

Attribute_value contains data about objects with different types.

If data changes at the knowledge level, then triggers have to be

created/altered/dropped as well. This means that the system has to generate and execute

DDL statements after all. In addition, the system has to check whether the existing data

violates new rules and in case of violation prohibit the changes at the knowledge level.

The primary key of table Object is (object_id, object_type_id). Fields that

correspond to the column object_id of Object contain system-generated identifiers of

objects. Values of the primary key do not prevent duplication of data about objects. It is

difficult, if not impossible, to declare that a set of attributes of an object type must have

unique values in case of the universal design. For example, let us assume that we want

to enforce the rule that each warehouse must have a unique name. The constraint Eq.

(3) of Attribute_value does not give the desired result because column text_value

contains values of many different attributes – for instance, names of districts and last

names of customers. Last names of customers do not have uniqueness constraint. A

district and a warehouse could have the same name.

CONSTRAINT unique_warehouse_name UNIQUE (text_value) (3)

Sometimes it is possible to use proprietary solutions in order to solve this problem.

For example, in PostgreSQL we could use the statement Eq. (4) in order to declare the

key that consists of one attribute. In this case, val1 is the identifier of attribute w_name

of object type Warehouse and val2 is the identifier of object type Warehouse.

CREATE UNIQUE INDEX idx_unique_w_name ON Attribute_value

(text_value) WHERE attribute_id=val1 AND object_type_id=val2; (4)

We note that the SQL standard [7] does not specify indexes and therefore this

solution is not universal. In this case, we do not declare database constraints that

belong to the conceptual level of a database, but indexes that are constructs of the

database internal level. If someone changes the identifiers val1 or val2 (in tables

Attribute or Object_type), then this index enforces an incorrect rule. The primary keys

of 6 tables, which are created based on the example of the regular design (part b of

Figure 1), involve two or more columns. It is not possible to enforce these keys by

using a unique index.

A database is "a collection of true propositions" [19]. A DBMS cannot enforce

truth, but as an approximation, it can check that all the data values are consistent (i.e.,

conform to the integrity constraints) [19]. Not all the consistent propositions are

correct, but all the correct propositions must be consistent. It is possible that the

complexity of defining constraints leads to a database with few constraints. Constraint

checking, if any, is done by an application that uses a database. It is likely that many

constraints are not checked at all because they need complex queries (see 2.2.6).

2.2.4. Compensating Actions

A DBMS can sometimes resolve constraint violations as they arrive by executing a

compensating action. We have to implement some compensating actions by using

triggers. For example, if we wish that deletion of an object with the type ot1 (for

example Order) should cause cascading deletion of all the related objects (see

Relationship in Figure 1) with the type ot2 (for example, Order_line), then the use of

"ON DELETE CASCADE" option in the declaration of a foreign key is not enough and

we have to create a trigger.

2.2.5. Default Values

SQL permits the declaration of zero or one default value for a column of a base table.

This feature is not always usable in case of the universal design. For example,

attributes ol_quantity of object type Order_line and c_payment_cnt of Customer could

have the default values 1 and 0, respectively. The values of these attributes are in the

same column int_value of table Attribute_value in case of the universal design.

Therefore, we have to use the triggers in order to use the default values. For example, if

we decide to create one trigger, then it must contain a set of if-then statements, each of

which specifies the default value of an attribute (see Eq. (5)). Values val3 and val4 are

the identifiers of attribute ol_quantity and object type Order_line, respectively.

IF NEW.attribute_id = val3 AND NEW.object_type_id=val4 THEN

NEW.int_value:=1; END IF; (5)

An alternative is to create a separate trigger for each default value. If someone

specifies new attributes or modifies the existing ones, then the system may have to

generate and execute DDL statements for creating, replacing, or removing triggers.

2.2.6. Query Complexity

Next, we present an informal specification of four queries. (Q1): Find the amount of

customers whose last name starts with the letter "B". Table 1 presents the SQL code of

this query in case of the different designs. (Q2): Find the amount of customers whose

last name starts with the letter "B" and who live in the state of Nebraska. (Q3): Find the

amount of customers whose last name starts with the letter "B", who live in the state of

Vermont, and who belong to district, the location of which is also Vermont. (Q4): Find

the amount of order lines where the price of the associated stock is bigger than 99.

We selected the queries based on their complexity. Q1 and Q2 use data about one

type of objects. Q3 and Q4 use data about two and three types of objects, respectively.

In case of the regular design, the restriction condition of Q1 is a simple predicate that

involves no connectives and the restriction condition of Q2 is a compound predicate

that involves one connective.

Intuitively, we see that the SQL code is more complex in case of the universal

design. How can we show it formally? Tow [25] proposes a method of tuning SQL

queries, the part of which is the creation of a query diagram. It is a directed graph that

represents a query. In this graph the nodes are table aliases and arcs represent join and

semijoin operations. We can use the metrics of complexity of a graph [26] in order to

measure the complexity of a query. We constructed the query diagrams and in case of

each diagram counted the amount of nodes (N) and the amount of arcs (A). From the

set of complexity metrics that are introduced by Latva-Koivisto [26] we calculated the

Coefficient of Network Complexity: CNC=(A*A)/N. The bigger the value is the more

complex is the graph (query). It is possible to use other complexity metrics as well.

Based on Table 2 we can conclude that the resolution of the presented problems

requires more complex queries in case of the universal design than in case of the

regular design. It is possible to simplify the query-writing task by creating operators

[10] or viewed tables. However, after performing the view resolution, a DBMS still has

to execute a complex query even in case of the simple problems. Chen et al. [3]

propose to use combinations of simpler queries and temporary tables in order to speed

up the queries. In this case, a user of a database looses an advantage of a DBMS

according to which a user can make a (complex) query and a DBMS decides how to

execute it. In this case, a query designer has to describe a procedure how to retrieve the

desired results.

Table 1. Example of queries in case of different database designs.

Universal design Regular design

SELECT Count(*) AS amt FROM Attribute_value AS AV INNER JOIN

(Attribute AS A INNER JOIN Object_type AS OT ON A.object_type_id =
OT.object_type_id) ON (AV.object_type_id = A.object_type_id) AND

(AV.attribute_id = A.attribute_id) WHERE OT.name = 'CUSTOMER'

AND A.name = 'C_LAST' AND AV.text_value LIKE 'B%';

SELECT Count(*) AS amt

FROM Customer WHERE
c_last LIKE 'B%';

Table 2. Query complexity.

 Universal design Regular design

Query ID N A CNC N A CNC

Q1 3 2 1.33 1 0 0.00

Q2 6 5 4.17 1 0 0.00

Q3 10 9 8.10 2 1 0.50

Q4 9 8 7.11 3 2 1.33

2.2.7. Size of Data

Chen et al. [3] write: "The EAV/CR representation consumed approximately four times

the storage of our conventional schema." Conventional schema is created according to

the regular design.

Our findings support this conclusion. We analyzed the tables that are specified in

Section 1 (see Table 3). PostgreSQL provides the system-defined functions

pg_relation_size that can be used in order to find the disk space (in bytes) used by a

table [17]. PostgreSQL provides the system-defined function pg_total_relation_size

that can be used in order to find the total size of a table together with its associated

indexes and toasted data (in bytes) [17]. Before calculating the size of tables we

collected statistics and reclaimed storage that was occupied by deleted rows.

The only indexes that the tables had during the calculation of data size were the B-

tree indexes that were created automatically due to the primary key constraints. Each

table had the primary key. The primary keys of the tables of the regular design are

specified in the document of TPC-C [8]. In average, both the tables of the universal

design and the regular design had 2.4 columns in a primary key. Each index contains

the values of indexed columns. Therefore, due to large indexes, the difference between

the sum of table size and the sum of total table size is relatively big.

Data in the column "Sum of table size" is calculated by summarizing the sizes of

tables that are found by using pg_relation_size. The sum of sizes of tables of the

universal design is approximately 4.75 times bigger than the sum of sizes of tables of

the regular design. Data in the column "Sum of total table size" is calculated by

summarizing the sizes of tables that are found by using pg_total_relation_size. The

sum of total sizes of tables of the universal design is approximately 6.01 times bigger

than the sum of total sizes of tables of the regular design.

"It is true that EAV/CR is more space-efficient for sparse data." [3] Our test data is

not sparse. Only 2.4 percent of columns of the tables of the regular design (Figure 1.

part b) are optional (permit NULLs).

Table 3. The size of tables that are created according to the different designs.

 Sum of table size (in bytes) Sum of total table size (in bytes)

Universal design 687415296 1083359232

Regular design 144728064 180404224

2.2.8. Performance of Database Operations

Next, we present the results of measurements of the performance of database

operations in case of the different designs. We performed five times each query (Q1-

Q4) that was specified in Section 2.2.6. In addition, we measured the performance of a

transaction (RW): Create new order where the amount of order lines is between 5 and

15. The amount of order lines is randomly selected.

Each time we measured the time (in milliseconds) that a DBMS needed in order to

perform the operation and present the results. For each operation, we calculated the

average time in millisecond (see Table 4) based on these five measurements.

In case of Q4 the performance was firstly better in case of the universal design.

However, the performance of the same operation was better in case of the regular

design (Q4*) after we created a composite index that covers the columns ol_i_id and

ol_supply_w_id of table Order_line.

2.2.9. Dependencies Between Database Objects

Database objects like triggers, declarative constraints, and conditional indexes depend

on the specifications at the knowledge level in case of the universal design. Data

changes at this level can cause creation, modification, or removal of these database

objects. Dependencies between the database objects are automatically recorded in a

database catalog by a DBMS. A database developer has to explicitly design and

implement tables for recording the dependencies in case of the universal design.

2.2.10. Access Control

SQL provides statements for granting privileges that allow us to perform a given action

on a specified table or column. Let us assume that: (1) a database contains data about

objects with types ot1 and ot2; (2) user u1 has right to select and update data that

correspond to ot1 and does not have rights to use the data that corresponds to ot2.

It is unreasonable to grant u1 direct access to tables Object and Attribute_value.

These tables contain data about objects with type ot1 as well as data about objects with

type ot2. We could create two viewed tables that present data about objects with types

ot1 and ot2, respectively. Then we can give u1 rights to use these tables in order to see

or modify data. In some DBMSs (like PostgreSQL 8.1) it is not possible to modify data

in base tables through viewed tables without further programming [17].

Table 4. Performance test results.

Operation ID Regular design (ms) Universal design (ms)

Q1 259,213 877,700

Q2 260,305 1865,397

Q3 26,252 654, 364

Q4 1581,838 599,413

Q4 * 396,471 599,413

RW 207,682 327,591

The result might be that the systems, which use a database that follows the

universal design, do not use the security mechanisms of a DBMS, in order to restrict

access to the data.

2.2.11. Concurrency Control

Locking is a widely used mechanism for concurrency control by DBMSs. There are

situations that need special care in case of the universal design. Modification of data

about an object (its attribute values and relationships) should restrict concurrent

modification of data about the same object. For example, two users could change data

of a district concurrently so that one modifies the state and another modifies the city.

The result could be an incorrect specification of the district.

In addition, modifications at the knowledge level that influence the operational

level should restrict concurrent data changes at the operational level.

If we use the regular design, then it is usually sufficient to rely on locking that is

automatically performed by a DBMS. On the other hand, in case of the universal

design we have to use some statements of a database programming language in order to

explicitly lock the data. Let us assume that we use DBMS PostgreSQL:

Regular design: If we modify the structure of table District, then a DBMS does not

allow concurrent modifications (insertions, updates, deletions) of data about districts.

Universal design: If we modify the data in table Attribute, then the unstandardized

LOCK statement has to be used. It blocks modifications of data about districts in table

Attribute_values. However, it blocks modification of attribute values of all the objects.

2.2.12. User Interface Design

Marenco et al. [12] write that data in a database that follows the universal design "must

be transiently converted (‘‘pivoted’’) into a conventional representation through fairly

elaborate metadata-driven code." [12] It requires "considerable front-end

programming" [18]. Conventional representation means that each data element is

presented in the separate field with the meaningful label.

3. Conclusions

We identified four advantages and twelve problems of the universal design. Some

studies suggest that it is easy to extend a database, which is created based on the

universal design. However, we found that it is difficult to extend this kind of database

in terms of the use of data types, integrity constraints, and default values. In addition,

experiments showed us that the use of the universal design causes problems in terms of

query complexity and performance. Whether or not to use the universal design depends

on the importance of the different database design aspects in a particular project. The

results also illustrate the need to extend the existing database design metrics and create

new metrics because, for instance, they do not consider all the integrity constraints.

In conclusion, the universal design advocates building a DBMS on top of a DBMS.

The knowledge level is actually a database catalog – an addition to the one that is

automatically created by a DBMS. Designers have to work out many ad hoc solutions

and do redundant work instead of relying on the system-defined features of DBMSs.

Many features that are present in a DBMS have to be duplicated in the applications.

The future work must include more experiments based on databases from different

domains. There is also a need to investigate alternative database designs that can be

used in order to cope with changing requirements.

References

[1] R. Baskerville, J. Pries-Heje, Racing the e-bomb: how the Internet is redefining information system

development methodology, In: Realigning Research and Practice in Information System Development,
Proceedings of the IFIP TC8/WG8.2 Working Conference, (2001) 49-68.

[2] D.C. Hay, Data model patterns: conventions of thought, Dorset House Pub, New York, 1996.

[3] R.S. Chen, P. Nadkarni, L. Marenco, F. Levin, J. Erdos, P.L. Miller, Exploring Performance Issues for a
Clinical Database Organized Using an Entity-Attribute-Value Representation, Journal Of The American

Medical Informatics Association, 7 (2000), 475-487.

[4] T. Kyte, Effective Oracle by Design, Oracle Press, McGraw-Hill/Osborne, 2003.
[5] S. A. Wang, F. Yang, C. Huey, F. Pecjak, B. Upender, A. Frazin, R. Lingam, S. Chintala, G. Wang, M.

Kellog, R.L. Martino, C.A. Johnson, Performance of using Oracle XMLDB in the evaluation of CDISC
ODM for a clinical study informatics system, In: Proceedings of the 17th IEEE Symposium on

Computer-Based Medical Systems. (2004) 594- 599.

[6] E. Eessaar, Relational and Object-Relational Database Management Systems as Platforms for Managing
Software Engineering Artifacts, Ph.D. thesis, Tallinn University of Technology, Estonia, 2006.

[7] J. Melton, ISO/IEC 9075-2:2003 (E) Information technology — Database languages — SQL — Part 2:

Foundation (SQL/Foundation), August 2003. Retrieved December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

[8] TPC BENCHMARK C Standard Specification Revision 5.8.0, 2006. Retrieved December 29, 2007, from

http://www.tpc.org/tpcc/spec/tpcc_current.doc
[9] M. Fowler, Analysis Patterns: Reusable Object Models, Addison Wesley Professional, 1997.

[10] H.H Do, E. Rahm, Flexible Integration of Molecular-Biological Annotation Data: The GenMapper

Approach, In: Proceedings of the 9th International Conference on Extending Database Technology,
LNCS Vol. 2992/2004. Germany: Springer Berlin, (2004) 811 – 822.

[11] D. Hageman, D.M. Reeves, net-Trials TM Clinical Trials Information System, In: Proceedings of 14th

IEEE Symposium on Computer-Based Medical Systems, (2001) 141-145.
[12] L. Marenco, N. Tosches, C. Crasto, G. Shepherd, P.L. Miller, P.M. Nadkarni, Achieving Evolvable

Web-Database Bioscience Applications Using the EAV/CR Framework: Recent Advances, Journal of

American Medical Informatics Association, 10 (2003), 444–453.
[13] J.L. Li, M. X. Li, H.Y. Deng, P.E. Duffy, H.W. Deng, PhD: a web database application for phenotype

data management, Bioinformatics, 21 (2005) 3443-3444.

[14] P. A. Bernstein, B. Harry, P. Sanders, D. Shutt, J. Zander, The Microsoft Repository, In: Proceedings of
the 23rd International Conference on Very Large Data Bases, Morgan Kaufmann, (1997) 3-12.

[15] P. Habela, Metamodel for Object-Oriented Database Management Systems, Ph.D. Thesis, Polish

Academy of Sciences, Warsaw, Poland, 2002.
[16] D. Bednárek, D. Obdržálek, J. Yaghob, F. Zavoral, Data Integration Using DataPile Structure, In:

Proceedings of ADBIS 2005. Tallinn: Institute of Cybernetics at Tallinn University of Technology,

(2005) 178-188.
[17] PostgreSQL 8.1.10 Documentation. Retrieved December 23, 2007, from

http://www.postgresql.org/docs/8.1/interactive/index.html

[18] J. Ahnøj, Generic Design of Web-Based Clinical Databases, Journal of Medical Internet Research, 5
(2003).

[19] C.J. Date, An Introduction to Database Systems, 8th edn, Pearson/Addison Wesley, 2003.

[20] M. Piattini, C. Calero, M. Genero, Table Oriented Metrics for Relational Databases, Software Quality
Journal, 9 (2001) 79–97.

[21] M. Piattini, C. Calero, H. Sahraoui, H. Lounis, Object-Relational Database Metrics. L'Object, March

2001.
[22] P. Gulutzan, T. Pelzer, SQL-99 Complete, Really, CMP Books, 1999.

[23] C. Türker, M. Gertz, Semantic integrity support in SQL:1999 and commercial (object-) relational

database management systems, The VLDB Journal, 10 (2001) 241–269.
[24] L. de Haan, T. Koppelaars, Apllied Mathematics for Database Professionals, Apress, USA, 2007.

[25] D. Tow, SQL Tuning, O'Reilly, 2003.

[26] A. Latva-Koivisto, Finding a complexity measure for business process models, Research Report, 2001.

