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1. ABSTRACT 
 
A review of existing lower bound approaches for dry block masonry structures reveals a lack 
of reliable analytical methods applicable to most general conditions. Usually the analysis is 
restricted to cases in which sliding is prevented by high friction among block interfaces. This 
leads, for arches, to the well-known hinging mechanisms first discussed in terms of plastic 
analysis by Heyman (1966). 
However, especially for historic buildings the quality of the contact surfaces or of the binding 
materials might be deteriorated so as to substantially reduce the original friction coefficient. 
In addition, some particular shapes of curvilinear structures, e.g. flat arches, would never 
collapse unless sliding occurred.  Hence the necessity of studying this group of problems 
under the more realistic assumptions of presence of sliding and absence of dilatancy.  
Herewith first is presented a proof of uniqueness of the solution for the limit state analysis of 
3D masonry arches, in the condition of axial symmetry of geometry and loading. This proof is 
crucial to the robustness of the results and allows a straightforward treatment of this class of 
problems as one of standard limit-state analysis. The analysis can easily be extended to barrel 
vaults, common in historic buildings and forming the structure of masonry bridges. 
On these assumptions a simple but very adaptable computer procedure, using a lower bound 
approach, has been developed for the calculation of the minimum thickness required to ensure 
stability for such structures. Parametric analysis shows how the geometry of the barrel vault 
varies depending on the eccentricity and inclination of the applied loads. 
 
 
2. INTRODUCTION 
  
The original application of plastic analysis to masonry structures proposed by Heyman [1], [2] 
is based on the assumptions of infinite compressive strength, no tensile strength and infinite 
friction resistance. In the last two decades numerous studies have applied this model to 
different types of dry masonry structures and discussed the effects of the relaxation of some 
or all the original assumptions. Specifically, if the possibility of sliding is contemplated, then 
the material behaviour is non-standard in terms of plasticity theory. 
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The satisfaction of the normality rule will imply the presence of dilatancy, which does not 
occur in reality, and non-compliance with the normality rule means that the fundamental 
theorems of plasticity will not in general provide a unique solution. A general review of the 
applicability of limit state analysis to finite friction systems and a first analysis of cases for 
which a unique solution can be found are contained in [3]. Livesley [4], [5], by adopting a 
lower-bound approach, was the first to develop a formal linear programming procedure to 
define the maximum load factor of two and three-dimensional structures. Masonry domes 
have been studied in more details by D’Ayala [6], [7]. Livesley proposed a post-optimality 
analysis to test the uniqueness of the computed load factor and concluded that, depending on 
the geometry and friction coefficient, only for some problems limit state analysis provides the 
correct lower bound collapse factor. The true mechanism is obtained by a manipulation of the 
associated kinematical solution. Gilbert & Melbourne [8], [9] have instead adopted a 
kinematic approach, including dilatancy, to the analysis of 2D multi-ring brickwork arches, 
under self-weight and live loads. 
Mathematical programming has been identified in the past as the best tool to solve the 
problem and Lo Bianco & Mazzarella [10] have proposed a procedure that satisfies 
uniqueness and does not imply dilatancy. More recently Baggio & Trovalusci [11], [12] have 
proposed a non-standard limit analysis approach based on determining the minimum of a 
class of load factors satisfying the kinematic and static condition simultaneously. The 
associated programme results however rather onerous in terms of time and memory 
requirements, as it depends on non-linear and non-convex optimisation procedures. 
A conservative approach is represented by the identification of reduced failure domains which 
lead to solutions statically admissible which satisfy the normality rule [3], [13], [14], [15]. On 
the other hand it is appropriate to systematically identify classes of problems for which a 
unique solution can be found. This is the scope of the work presented in this paper. 
The uniqueness of the solution, due to the symmetry, has been demonstrated by Sinopoli et al. 
[16] for 2D masonry arches through a parametric analysis. Here this is generalised to 3D 
systems by studying the behaviour of the block interface and by a critical analysis of the 
results obtained by application of a procedure based on optimum search. A previous study of 
2D masonry arches was carried out in [13] and a further study of masonry domes is being 
carried out in [17], both using a similar procedure. 
 
 
3. 3D DRY BLOCK MASONRY ARCHES 
 
3.1 Uniqueness of the solution 
 
3D arches can be modelled as three-dimensional discrete systems of rigid blocks in dry 
contact under the assumptions of infinite compressive strength for the blocks, no tension 
transmitted across the joints, shear strength at the block interfaces determined by cohesionless 
Coulomb friction. 
The governing relations of such systems formally correspond to those of a non-standard rigid-
plastic discretised structure, where the block interfaces are treated as the elements of the 
problem and the blocks are simply defining the geometry of the problem. Therefore the 
analysis is fully related to the behaviour of the interfaces, which can then be regarded as 
systems of stresses associated to frictional (plastic) constraints. Safety under the stated 
material assumptions is assured if a thrust line can be found which lies wholly within the 
masonry arch and satisfies frictional constraints. 
Consider the symmetric 3D arch in Figure 1, subjected to its own weight and to a couple of 
point loads P, acting generally at some point of it, eccentrically with respect to the mean plane 



XZ and symmetrically with respect to the vertical plane YZ. The contact forces between two 
adjacent voussoirs may have components both normal and tangential to the interface, the 
latter being resisted by friction. Also torsion moment will arise on the interface in order to 
equilibrate the action produced by the eccentric application of the external loads. 

Fig. 1. The 3D voussoir arch 
 
In order to prove the uniqueness of the solution, if reference is made to a condition of vertical 
loads applied to a generic voussoir, internal and external forces are contained in a vertical 
plane, identified by the XZ axes in Figure 2. 
Let now H, be the horizontal reactive thrust on a contact joint at some angle α from the 
vertical axis Z, W the self-weight of the considered upper and symmetric portion of the arch 
and  P the point load applied to this portion. By drawing at this interface the projection of the 
cohesionless Coulomb’s cone, it is self-evident that a range of admissible values of H can be 
identified depending on the applied load and on the friction coefficient. Then, being ϕ the 
friction angle, this range can easily be expressed by: 

( ) ( ) ( ) ( )ϕαϕα −+≤≤++ cotcot PWHPW       (1) 

where the lower and upper bound define points A and B on the Coulomb’s cone projection 
respectively (Figure 2), implying the incipient inward and outward sliding of the upper 
portion of the arch on the lower one when either of the equal signs hold. 

Fig. 2. The internal forces at a block interface of the arch. 
 
In both cases of sliding, the limiting compressive and shear forces are statically defined and 
particularly, taking into account (1) follows that: 
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for inward sliding, corresponding to point A and represented in Figure 2 by vectors CG and 
AC, and for outward sliding, corresponding to point B and represented by vectors EG and BE. 
For a given geometry, these limiting values of T and N are independent of each other and only 
depend on the external applied load and on the given value of the friction angle. This means 
that, in case of symmetric loading, there is a unique limiting value of the shear force, that is Ti 
or To depending on the direction of sliding, and the local equilibrium problem is at a limit 
state statically determined.  
This derives from the fact that, even for non-standard materials, if normal forces are given at a 
limit state, conditions (2) and (3), then they can be ignored in defining the yield surface, and, 
consequently, the Coulomb’s cone reduces to a circle in the plane of the shear forces [18]. 
The size of the circle obviously depends on the magnitude of the normal force N, but the 
imposition of the normality rule now does not imply dilatancy, and hence the solution, being 
equilibrated at the yield surface and not violating the kinematical constraints, is indeed the 
correct solution and is unique. Therefore the material constraints become now standard and 
the analysis falls within the framework of the classical plasticity theory. 
 
3.2 Limit-state analysis of 3D masonry arches 
 
The uniqueness prove shown in the previous section is here used to calculate, with a lower-
bound approach, the minimum thickness of a 3D circular arch of given radius and width, 
subjected to its own weight and to a couple of vertical loads P at some distance yP from the 
origin of axes. The procedure is developed for spreadsheet and a multipurpose mathematical 
programming solver is used to solve the problem of optimum. The load condition is 
symmetrical with respect to the middle plane YZ of the arch. The symmetric half arch is 
modelled as a system of n rigid voussoirs interacting by compressive and frictional joints and 
the mass is distributed along the centre-surface of mean radius R. Having defined the XZ 
plane as a plane of symmetry for the geometry of the arch and its own weight, the projection 
on this plane of the mean surface of the arch and the load P are depicted in Figure 3a) together 
with a hypothetical line of thrust and the resultants of each voussoir’s weight, Wi. Weights are 
considered as independent of the thickness of the arch. 

 
 

Fig. 3. a) Projection of the mean arch surface and hypothetical line of thrust on XZ. 
b) Projection of the generic voussoir and interface stress resultants on XZ. 
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Given the symmetry of the problem the unknown internal reactions are the thrust in the X 
direction H, and the resultant moment in the X direction XM . The latter arises from the 
eccentricity in the Y direction of P and produces torsion at the interfaces and at the springs of 
the arch, resisted by friction. Equilibrium of rotation around the Y axis yields (Figure 3a)): 
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It is then possible to define a line of thrust of the arch, in the XZ plane, once two of its points 
are given, A(0; 0; zA) and B(xB; 0; 0) (e. g. with zA = xB = R) at the crown and the springing 
joints respectively. The unique solution of the minimisation problem is then defined by 
identifying the positions of A and B for which the correspondent thrust line yields the 
minimum thickness required, while satisfying the frictional constraints. For the minimisation 
problem zA e xB are assumed as the geometric unknowns. The solution is found with a discrete 
approach, by defining the geometry of the line of thrust through the calculation of its 
coordinates x and z at a number of points, for instance one for each voussoir. The generic 
coordinates of the line of thrust are: 
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In (6) xi are the coordinates of the centre of gravity of each voussoir, while i
t z∆  are obtained 

by considering the incremental equilibrium to rotation at each subsequent voussoir: 
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where Pi is the external load applied to the ith voussoir from the crown and ( )1−−=∆ iii
t xxx . 

Now considering the generic interface j (with j=0,...n), in Figure 3b), the resultant Sj forms 
with the X axis an angle βj: 
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The thrust line in (6) can then be described by its points on the interfaces by the following: 
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where jα  is the angle that the generic interface forms with the Z axis. Equations (9) can be 

used to calculate the distance between the origin of the axes and the point of the thrust line:  
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and hence the thickness t, with the hypothesis that is constant, is found by the relation: 
t
jRRt −= max           (11) 

that will be the objective function to minimise. 
The material constraints are defined by limiting the maximum values of the internal shear 
force and torsional moment to be not greater than the frictional strength at each block 
interface. The resultant of internal forces and moments for the generic interface are:   
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where j
XM  = 0 for the interfaces above the loaded voussoir, and constant for all the others. 

The components of these two vectors along the local axes ξ and ζ in Figure 3b) are: 
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Considering the generic interface j of dimensions w and t (arch’s width and thickness), as 
shown in Figure 4, with local axes η and ζ (η parallel to global Y). The point C of application 
of Nj has eccentricity j

Nη , with respect to the centre of gravity of the surface: 

j

j

j
N N

M ζη =            (15) 

If the shear resultant Tj is also applied in C, then the resultant torsion on the surface is: 
j
Nj
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A reduced surface can then be considered over which it is assumed that the direct stresses Nσ  

are uniformly distributed, with C centre of gravity and reduced dimensions ja  and jb : 
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Fig. 4. Reduction of the active interface surface for interaction of torsion and shear. 
 
This assumption is in favour of safety and does not alter the conditions set in the first section 
of the paper, which ensure the validity of the standard approach. Casapulla [19] has proposed 
an expression for the limit capacity of frictional surface in torsion in presence of shear parallel 
to one of the axis of symmetry, which is, again, in favour of safety:  
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is the limit frictional moment in absence of shear force. Therefore the problem of minimum, 
with variables xB and zA, assumes the following standard format: 

Minimise t
jRRt −= max          (20) 

under the material constraint conditions: 
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4. DISCUSSION OF RESULTS AND CONCLUSIONS 
 
The procedure outlined above has been applied to the study of a simple 3D arch, made out of 
27 voussoirs subjected to their own weight and to a couple of symmetrical point loads acting 
at a point at 60° from the vertical. The parameters that influence the minimum thickness are 
the coefficient of friction, the magnitude of the loads and their eccentricity with respect to the 
XZ plane of symmetry. The results are plotted for increasing value of the ratio of the 
concentrated load to the self weight of the half arch P/Wtot. 
Figure 5 shows the effect of increasing the ratio between eccentricity and width for increasing 
values of P/Wtot. The friction coefficient has been set to 0.6, so as to prevent sliding 
mechanisms associated with the self-weight, and the width of the arch equals 10% of the 
radius. The curves show that for values of the vertical loads up to 20% of the half arch weight, 
the eccentricity to width ratio is uninfluential on the minimum thickness, except for values 
close to 1. For increasing values of the ratio P/Wtot the range over which the eccentricity is 
uninfluential decreases sharply, after which the relationship between the two ratios is linear. It 
is however interesting to notice that while for small values of the eccentricity the load placed 
at 60 degrees has a beneficial effect on the minimum thickness required (as it is well known 
for infill action), the effect becomes negative as the eccentricity increases. 
The influence of the width of the arch on the minimum thickness, for a given value of the 
eccentricity produces further understanding into this behaviour. Keeping the eccentricity 
equal to 10% of the radius, the initial values of the curves in Figure 6 are equivalent to the 
values obtained in Figure 5 for ecc./width = 1, but,  increasing the width, this ratio 
proportionally decreases, and so also the thickness required.  The beneficial effect of the 
increasing width on the required thickness is more pronounced for smaller values of the live 
to dead load ratio. It is worth mentioning that these results are influenced by the particular 
model adopted for the interaction between torsional moment and shear for the resisting cross 
section.  On the converse if the eccentricity is increased proportionally with the width of the 
arch the effect is detrimental. Figure 6 can be used both for design and assessment. In the first 
instance given a value of P/Wtot the minimum values of t and w can be identified, hence 
minimising the required structural dimensions. In case of assessment, provided a choice of 
safety factor for the applied load, couples of values of t and w above the chosen curve are 
safe, points below the chosen curve are unsafe conditions. 
Finally, Figure 7 shows the increase in carrying capacity of the arch as the friction coefficient 
increases. Actually, when the eccentricity is taken as half of the width, and the width is 10% 
of the radius, for small values of P the minimum thickness is independent of the friction 
coefficient, while as the value of P increases the relationship becomes hyperbolic and, as 
expected, the minimum thickness increases for decreasing values of the friction coefficient. 
On the basis of these results it can therefore be stated that the procedure proposed allows the 
plastic analysis of 3D masonry arches within the framework of the standard limit analysis in 
condition of eccentricity of load. This represents an enhancement with respect to the current 
state of the art of two-dimensional approaches.  Furthermore the proof of uniqueness and the 
static approach ensure the robustness and safety of the solution obtained.  However it is of 
interest to study the associated mechanisms, to identify which range of the parameters lead to 
sliding failure, in preference to hinging. This part of the study is currently under development. 
The procedure presented can easily be extended to different loading condition and to the case 
of variable thickness. A further development, which is currently in progress, involves 
extension to the study of block masonry domes. 



αα = 6 0 ° ;  µµ = 0 , 6 ;  w i d t h / R = 0 , 1

0

0 .1

0 .2

0 .3

0 0 .2 0 .4 0 .6 0 .8 1
ecc /w idth

t/R

P/W to t=0 ,2 P /W to t=0 ,4 P /W to t=0 ,6 P /W to t=0 ,8 P /W to t=1
 

Fig. 5. The arch minimum thickness as a function of the load eccentricity. 
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Fig. 6. The arch minimum thickness for constant eccentricity and variable width. 
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Fig. 7. The arch minimum thickness as a function of  the friction coefficient. 
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