
TOWARDS A SEMIOTIC QUALITY FRAMEWORK OF

SOFTWARE MEASURES

Erki Eessaar
Department of Informatics, Tallinn University of Technology, Raja 15,12618 Tallinn, Estonia

eessaar@staff.ttu.ee

Keywords: Metrics, Measures, Semiotics, Quality, Metamodel, Database design, SQL.

Abstract: Each software entity should have as high quality as possible in the context of limited resources. A software

quality measure is a kind of software entity. Existing studies about the evaluation of software measures do

not pay enough attention to the quality of specifications of measures. Semiotics has been used as a basis in

order to evaluate the quality of different types of software entities. In this paper, we propose a

multidimensional, semiotic quality framework of software quality measures. We apply this framework in

order to evaluate the syntactic and semantic quality of two sets of database design measures. The evaluation

shows that these measures have some quality problems.

1 INTRODUCTION

Values of software quality measures (software

measures) allow developers to evaluate the quality

of software entities and improve them if necessary.

Measures themselves are also software entities and

must have as high quality as possible.

A part of the development of each measure is

formal and empirical evaluation of the measure

(Piattini et al., 2001b). Existing evaluation methods

of measures do not pay enough attention to the

quality of specifications of measures. If the quality

of a specification is low, then it is difficult to

understand and apply the measure. Therefore, we

need a method for evaluating the quality of

specifications of measures. On the other hand, there

is already quite a lot of studies about how to use

semiotics (the theory of signs) in order to evaluate

the quality of software entities. In this paper, we

extend this research to the domain of measures.

The first goal of the paper is to introduce a

semiotic quality framework for evaluating

specifications of software measures. This framework

is created based on the semiotic quality framework

of conceptual modeling SEQUAL that was proposed

by Lindland et al. (1994) and has been improved

since then. The second goal of the paper is to show

the usefulness of the proposed framework by

presenting the results of a study about the syntactic

and semantic quality of two sets of specifications of

database design measures.

We follow the guidelines of García et al. (2006)

and use the term "measure" instead of the term

"metric". In this paper the word "measure" denotes

"software measure", if not stated otherwise. We use

analogy (Maiden & Sutcliffe, 1992) as the research

method in order to work out the framework and new

measures based on the results of existing research.

The rest of the paper is organised as follows. In

Section 2, we specify a semiotic quality framework

for evaluating specifications of measures. In Section

3, we use the framework in order to evaluate two

sets of specifications of database design measures.

Section 4 summarizes the paper and points to the

future work with the current topic.

2 A SEMIOTIC QUALITY

FRAMEWORK

Many authors have investigated how to evaluate
measures and have proposed frameworks that

involve empirical and formal validation of measures
(Schneidewind, 1992; Kitchenham et al., 1995;
IEEE Std. 1061-1998, 1998; Kaner & Bond, 2004).

Jacquet and Abner (1998) investigate the state of

the art of validation of measures and describe a

detailed model of measurement process. They claim,

based on the literature review, that existing

validation frameworks of measures do not pay

enough attention to the validation of the design of a

measurement method. McQuillan and Power (2006)

write that many measures "are incomplete,

ambiguous and open to a variety of different

interpretations."

Some researchers have used semiotics as the

basis in order to work out evaluation frameworks of

different kinds of software entities. According to

Merriam-Webster dictionary <http://www.m-

w.com/> semiotics is "a general philosophical theory

of signs and symbols that deals especially with their

function in both artificially constructed and natural

languages and comprises syntactics, semantics, and

pragmatics." Belle (2006) writes that any

informational object has a syntactic, semantic, and

pragmatic aspect. Syntax, semantics, and pragmatics

relate an informational object to specification

language, specified domain, and audience of the

object, respectively (Lindland et al., 1994).

Semiotics has been used as the basis in order to

evaluate the quality of conceptual models (Lindland

et al., 1994), specifications of requirements

(Krogstie, 2001), ontologies (Burton-Jones et al.,

2005), enterprise models (Belle, 2006), and process

models (Krogstie et al., 2006). A software measure

is a kind of software entity. In this paper, we

propose that semiotics can be successfully used in

order to evaluate specifications of measures.

2.1 Specification of the Framework

In this section, we present a multidimensional,

semiotic evaluation framework of the quality of

specifications of measures. A model is a kind of

software entity. A measure is a kind of software

entity. Each software entity can be characterized in

terms of different quality levels (physical, empirical,

syntactic etc.). Each quality level has one or more

quality goals. Each quality goal has zero or more

associated measures that allow us to measure the

quality of a software entity in terms of the goal.

The framework comprises physical, empirical,

syntactic, semantic, perceived semantic, pragmatic,

and social quality. We adapt the semiotic quality

framework SEQUAL in order to use it in a new

context – the evaluation of measures. The

framework has to enhance the existing validation

frameworks of measures. In addition, we present

three candidate measures for evaluating the

syntactic and semantic quality of specifications of

measures. A candidate measure is a measure that has

not yet been accepted or rejected by experts. We

demonstrate the use of these measures in Section 3.

These measures do not form a complete suite for

evaluating measures. Future studies must work out a

suite of measures that covers all the aspects of the

framework.

We propose to use metamodels, mapping of

elements of models, and model-management

operations in order to check the quality of some

aspects of a specification of a measure. The novelty

is in the combined use of them.

The use of metamodels and ontologies in order to

specify and evaluate measures is not a new method.

Baroni et al. (2005) define some database design

measures in terms of SQL:2003 ontology and use

Object Constraint Language (OCL) in order to

specify measures as precisely as possible. McQuillan

and Power (2006) propose to extend the metamodel

of Unified Modeling Language (UML) with a

separate package that contains specifications of

measures as OCL queries. It allows us to find

measurement results based on a software entity e

that is created by using a language L. The

precondition of the use of the method is the

existence of a metamodel of L and the existence of a

UML model that represents e.

The use of a mapping of model elements has

been used, for instance, in order to evaluate UML

metamodel (Opdahl & Henderson-Sellers, 2002) in

terms of Bunge–Wand–Weber (BWW) model of

information systems. In the proposed method and

examples we assume that the relevant models are

UML class models.

2.1.1 Syntactic Quality

Syntactic correctness is the only syntactic goal
(Krogstie et al., 2006). The syntactic correctness has
two subgoals in the context of measures because we
have to use two different types of languages in order
to specify measures.

Firstly, the content of each specification of a

measure is written by using one more languages. For

instance, these languages could be natural languages

like English, generic formal textual languages like

OCL, domain-specific formal textual languages like

Performance Metrics Specification Language

(Wismüller et al., 2004), or generic visual languages

like UML. For example, Baroni et al. (2005) specify

database design measures by using English and

OCL. Therefore, the first subgoal of the syntactic

correctness is to ensure that all specifications of

measures follow the syntax rules of languages that

are used in order to write the content of these

specifications.

Next, we use an analogy with the database

domain in order to illustrate additional aspects of the

syntactic quality of specifications of measures. Each

specification of a measure consists of one or more

user-visible components. The Third Manifesto (Date

& Darwen, 2006) is a specification of future

database systems. According to the manifest each

appearance of a value of a scalar type T has exactly

one physical representation and one or more possible

representations. Specification of each possible

representation for values of type T is part of the

specification of T. We could conceptually think

about measures as values that belong to the scalar

type Measure. In this case, each measure has one or

more possible representations of its specification.

Therefore, the second subgoal of the syntactic

correctness is to ensure that all appearances of

specifications of measures conform to the rules of

one the possible representations of type Measure.

There is more than one specification that can be

used as a basis in order to work out a possible

representation of a measure. IEEE Standard for a

Software Quality Metrics Methodology ("IEEE,"

1998) prescribes how to document software metrics

(measures) and Common Information Model

("DMTF CIM Metrics schema," 2006) provides

specification of metrics (measures) schema.

Each possible representation has one or more

associated constraints that a correctly structured

specification of a measure must follow. A problem

with the IEEE Standard for a Software Quality

Metrics Methodology is that it does not clearly

describe constraints that must be present in the

possible representation of a measure. For example, if

we want to specify this possible representation by

using UML class model, then we do not have precise

information in order to specify minimum and

maximum cardinality at the ends of associations.

If we want to check whether a specification of a

measure m conforms to the second subgoal, then we

have to do the following. Firstly, we have to create a

model of the structure of m. After that we have to

create a mapping between the model of the structure

of m and the model that specifies a possible

representation of the type Measure. There is a pair

of model elements in the mapping if the constructs

behind these elements are semantically similar or

equivalent.

Let us assume that we create these models as

UML class models. The elements of these models

are classes, properties, and relationships. If X is the

set of all the elements of the model of the structure

of m and Y is the set of all the elements of the model

of possible representation, then ideally there must be

a bijective function f: X→Y. The amount of

discrepancies between the models characterizes the

amount of syntactic problems of m.

The creator of a UML class model can often

choose whether to model something as a class or as

a property (attribute) of a class. Larman (2002)

suggests about the construction of conceptual class

model: "If in doubt, define something as a separate

conceptual class rather than as an attribute." Based

on this suggestion, we can simplify the use of the

method by considering only classes and not

considering properties/relationships that are present

in the class models (see Figure 1). It is in line with

the example that is provided by Opdahl and

Henderson-Sellers (2002). They evaluate a language

based on classes of a metamodel (and not based on

properties or relationships). We note that Figure 1

illustrates bijective functions and Y does not contain

all the possible model elements.

name

costs

benefits

X Y
name

costs

benefits

Figure 1: A bijective function.

Next, we present a candidate measure for

evaluating the syntactic richness of a specification of

a measure m.

SR(m): Let Y be the set of all the classes in a

model of possible representation of measures. Let y

be the cardinality of Y. Let X be the set of all the

classes in a model of the structure of a specification

of a measure m. Let Z be the set of all the classes in

Y that have a corresponding class in X. There exists

a pair of (corresponding) classes if the constructs

behind these classes are semantically similar or

equivalent. Let z be the cardinality of Z. Then

SR(m) = z/y.

The possible value of SR(m) is between 0 and 1.

0 and 1 denote minimal and maximal syntactic

richness, respectively.

2.1.2 Semantic Quality

Each measure has one or more associated domains.
For instances, Choinzon and Ueda (2006) present 40

measures that belong to the domain of object-
oriented design. Piattini et al. (2001b) present twelve
measures that belong to the domain of object-
relational database design.

Let us assume that we have a specification of a

measure m that is created in order to measure a

domain d. The feasible validity and feasible

completeness are the only two semantic goals

according to SEQUAL framework (Krogstie et al.,

2006). Validity means that each statement about d

that is made by m must be correct and relevant.

Completeness means that m must contain all the

statements about d that are correct and relevant. On

the other hand, it is often impossible to achieve the

highest possible semantic quality due to limited

resources. Therefore, the goal is to achieve feasible

validity and feasible completeness. In this case, there

does not exist an improvement of the semantic

quality that satisfies the rule: its additional benefit to

m exceeds the drawbacks of using it.

Each measure considers only some aspect of the

domain and not the entire domain. Therefore, we

have to consider completeness in terms of sets of

related measures. Measures, which belong to a set of

measures about some domain, must together contain

all the statements about the domain that are correct

and relevant.

How can we evaluate the validity and

completeness of measures? Krogstie et al. (2006)

writes about models that it is only possible to

objectively measure the syntactic quality of models.

Krogstie et al. (2006) think that objective

measurement of other quality levels (including

semantic quality) of models is not possible because

"both the problem domain and the minds of the

stakeholders are unavailable for formal inspection."

We claim that the situation is partially different in

case of measures. The minds of the stakeholders are

still unavailable for formal inspection. On the other

hand, each measure can be used in order to measure

the quality of one or more software entities. Each

software entity is created by using one or more

languages. Many of these languages are formal

languages. Examples of these languages are UML

and the underlying data model of SQL:2003. The

abstract syntax of a formal language can be specified

by using a metamodel (Greenfield et al., 2004). In

the context of measures, the metamodels of these

languages are specifications of the domains. We can

use the metamodels as a basis in order to evaluate

the semantic quality of specifications of measures.

Let us assume that we use UML class models for

creating metamodels. In this case classes specify

language elements and properties/ relationships

specify relationships between the language elements

(Greenfield et al., 2004). Let us assume that we want

to evaluate the validity of a specification of a

measure m that is used for evaluating software

entities that are created by using a language L. The

procedure:
1. Identification of L-specific concepts from m.

For instance, Piattini et al. (2001b) specify the
measure "Referential Degree of a table T" as
"the number of foreign keys in the table T." In
this case, L is SQL and L-specific concepts are
foreign key and table.

2. Construction of a UML class model based on
the concepts that are found during step 1.

3. If X is the set of all the model elements from
step 2 and Y is the set of all the elements of a
metamodel of L, then ideally there must exist a
total injective function f: X→Y.

We can simplify the evaluation of validity by

considering only classes (see Figure 2) and not

considering properties/relationships that are present

in the class models (see previous section). Model

elements in Y in Figure 2 are from a metamodel of

the underlying data model of SQL:2003 (Melton,

2003). We note than Figure 2 illustrates total

injective functions and Y does not contain all the

possible model elements.

table

foreign key

X Y

base table

referential integrity constraint

viewed table

Figure 2: A total injective function.

One of the object-relational database design

measures (Piattini et al., 2001b) is "Percentage of

complex columns of a table T." The SQL standard

(Melton, 2003) does not specify the concept

"complex column". Therefore, in this case the

function f is a partial injective function. Next, we

present a candidate measure EV(m) for evaluating

the validity of a specification of a measure m.

EV(m): Let X be the set of all the classes in a

class model that is constructed based on the L-

specific concepts that are present in a specification

of a measure m. Let x be the cardinality of X. Let Y

be the set of all the classes in a metamodel of a

language L. Let Z be the set of all the classes in X

that have a corresponding class in Y. There exists a

pair of (corresponding) classes if the constructs

behind these classes are semantically similar or

equivalent. Let z be the cardinality of Z. Then

EV(m) = z/x.

The possible value of EV(m) is between 0 and 1.

0 and 1 denote minimal and maximal semantic

validity, respectively. For instance, x=2, z=2, and

z/x=1 in case of the example in Figure 2.

Next, we present a candidate measure EC(M) for

evaluating the completeness of a set of specifications

of measures (we denote this set as M). We assume

that all these measures allow us to evaluate software

entities that are created by using a language L. For

simplicity, the calculation procedure considers only

classes and does not consider properties and

relationships. The calculation of EC(M) starts with

the preparative phase that contains three steps:
1. For each specification in M perform step 1 from

the validity evaluation procedure.
2. For each specification in M, construct a

simplified class model that specifies only
classes (based on the result of step 1).

3. Merge all the models that are constructed during
the step 2 by using the generic model
management operator merge (Bernstein, 2003).

EC(M): Let X be the set of all the classes in the

merged model that is produced as the result of step

3. Let Y be the set of all the classes in a metamodel

of a language L. Let y be the cardinality of Y. Let Z

be the set of all the classes in Y that have a

corresponding class in X. There exists a pair of

(corresponding) classes if the constructs behind

these classes are semantically similar or equivalent.

Let Z' be the set that contains all classes from Z

together with all their direct and indirect subclasses.

Let z' be the cardinality of Z'. Then EC(M) = z'/y.

The possible value of EC(M) is between 0 and 1.

0 and 1 denote minimal and maximal semantic

completeness, respectively.

Why we have to construct the set Z'? Value

substitutability in case of a parameter of a read only

operator (that has the declared type T) means that

"wherever a value of type T is permitted, a value of

any subtype of T shall also be permitted" (Date &

Darwen, 2006). Similarly, for instance, base table is

a kind of table. In a metamodel of SQL, base table

can be specified as a subclass of table. If we have a

measure that allows us to measure tables in general,

then it is possible to use this measure in order to

measure base tables in particular.

For example, if X = {table} and Y = {table, base

table}, then Z = {table}, Z' = {table, base table},

y = 2, z' = 2, and z'/y = 1.

2.1.3 Other Quality Levels

We use the works of Krogstie et al. (2001; 2006) as
the basis in order to introduce the other quality
levels.

Physical quality has the goals: externalisation

and internalisability (Krogstie et al., 2006).

Externalisation means that each measure must be

available as a physical artefact that uses statements

of one or more languages. Each measure must

represent the knowledge of one or more software

development specialists. Internalisability means that

each measure must be accessible so that interested

parties can make sense of it.

Minimal error frequency is the only empirical

quality goal (Krogsie et al., 2001). Each externalised

measure has one or more possible specifications that

a human user can read and use. The layout and

readability of each specification must allow users to

correctly interpret the measure.

Feasible perceived validity and feasible

perceived completeness are the only two perceived

semantic quality goals (Krogstie et al., 2001). The

perceived semantic quality of measures considers

how the audience of measures interprets measures

and their domains. For instance, if we want to

evaluate the perceived validity of a specification of a

measure, then we have to construct a model that

specifies how some interested parties understand the

specification. We also have to construct a model that

specifies how the parties understand the domain of

the measure. After that we have to compare these

models (see Section 2.1.2).

Comprehension is the only pragmatic quality

goal (Krogstie et al., 2006). Each specification of a

measure must be understandable to its audience. For

instance, Kaner and Bond (2004) present ten

evaluation questions about measures. If a

specification of a measure has high pragmatic

quality, then an interested party should be able to

answer these questions based on the specification.

Feasible agreement is the only goal of social

quality (Krogstie et al., 2006). The social quality

considers how well different parties have accepted a

measure (how widely a measure is used), how much

they agree on interpretation of a measure, and how

well they resolve the conflicts that arise from

different interpretations.

2.2 Discussion

Next, we discuss the advantages and possible
problems of the proposed approach.

2.2.1 Advantages

The use of the semiotic framework has already been
tested in case of different types of software entities.
The proposed framework allows us to organize the

knowledge about the evaluation of specifications of
measures. We can use the existing studies about
semiotic frameworks in order to find new means of
improving the quality of specifications of measures
and candidate measures for evaluating the quality of
these specifications. For instance, Burton-Jones et al.
(2005) present a suite of measures for evaluating
ontologies. The suite consists of ten measures that
allow us to measure the syntactic, semantic,
pragmatic, and social quality.

The measure SR(m) (see Section 2.1.1) is

analogous to the measure for evaluating syntactic

richness of an ontology. The measure EV(m) is

similar to the measure EI for evaluating semantic

interpretability of an ontology: "Let C be the total

number of terms used to define classes and

properties in ontology. Let W be the number of

terms that have a sense listed in WordNet. Then EI =

W/C" (Burton-Jones et al., 2005). Instead of

WordNet, the measure EV(m) uses a metamodel of

the language that is the domain of m. The measure

EC(M) does not have a corresponding measure in

the suite of measures for evaluating ontologies.

2.2.2 Challenges

Firstly, the construction of a model based on a

specification of a measure, and the creation of a

mapping between different models requires

somewhat subjective decisions. Therefore, it is

possible that two different parties who use the same

measure in case of the same set of specifications of

measures will get different results.

For instance, in our view Piattini et al. (2001a;

2001b) use the concept table in order to denote base

tables. Base table is not the only possible type of

tables. A human user can find this kind of

inconsistent use of terminology by studying the

context of specification. On the other hand, it makes

the automation of the evaluation process more

difficult. Another example is that if we simplify the

calculation of syntactic richness, validity, and

completeness by considering only classes, then the

result depends on whether the designers of models

prefer to use attributes or classes in UML class

models.
Secondly, the use of EV(m) and EC(M) requires

the existence of metamodels of languages. If the
required metamodels do not exist, then the use of the
measures will be time consuming because a
developer has firstly to acquire the metamodels.
Thirdly, there could exist more than one

specification of the same measure. These
specifications could refer to different language

elements. For instance, informal specification of the
measure "Referential Degree of a table T" that is
proposed by Baroni et al. (2005) refers to the
language (SQL) elements foreign key and table. On
the other hand, formal specification of the same
measure in OCL (Baroni et al., 2005) refers to the
language (SQL) elements foreign key and base table.
Therefore, each evaluation must be accompanied
with the information about the specification of the
measure that is used as the basis of this evaluation.
Finally, it is possible that a language has more

than one metamodel. These metamodels could be

created by different parties. For instance, DMTF

Common Information Model database specification

of SQL Schema ("DMTF CIM Database," 2006),

relational package of OMG Common Warehouse

Metamodel ("OMG," 2003), and the ontology of

SQL:2003 (Baroni et al., 2005) are variants of

metamodel of SQL. These models contain 8, 24, and

38 classes, respectively. It is also possible that there

are differences between the different versions of the

same metamodel. The values that characterize the

quality of a specification of a SQL-database design

measure will be different depending on the used

metamodel (see Section 3). Therefore, each

metamodel-based evaluation of a specification of a

measure must be accompanied with the information

about the version of the metamodel that is used in

the evaluation. If we want to compare two sets of

measures based on the values of the proposed

measures, then these values must be calculated

based on the same metamodel version.

3 EVALUATION OF DATABASE

DESIGN MEASURES

Next, we illustrate the use of the proposed
framework. In this paper, we investigate the quality
of specifications of database design measures. The
work of Blaha (1997) shows us that many databases
do not have the highest possible quality. Blaha
(1997) writes that about 50% of databases, which his
team has reverse engineered, have major design
errors. Therefore, it is clearly necessary to evaluate
and improve the design of databases. We can use
database design measures for this purpose.

Unfortunately there exist few database design

measures. Piattini et al. (2001a) present three table

oriented measures for relational databases. Piattini et

al. (2001b) present twelve measures that help us to

evaluate the design of object-relational databases.

The measures allow us to evaluate databases that are

created by using SQL. We call the set of informal

specifications of these measures as MSQL and

MORSQL, respectively. We investigated MSQL and

MORSQL by using the proposed measures (see Section

2). For recording the evaluation results and

performing the calculations, we constructed a

software system (based on the database system MS

Access).

For each specification of a measure, we

calculated the value of SR(m) based on the

specification of possible representation of measures

that is proposed in IEEE Std. 1061-1998 ("IEEE,"

1998). We assumed that all the components of the

possible representation are modelled as separate

classes. In Table 1, we summarize the results. For

each set of specifications (M), we present the lowest

value, the mean value, and the highest value of

SR(m) among all the specifications that belong to M.

Table 1: Syntactic richness of measures.

 lowest mean highest

MSQL 0.31 0.36 0.38

MORSQL 0.19 0.24 0.31

The only components that are in our view present

in all the evaluated specifications are name, data

items, and computation.

For each specification of a measure, we

calculated the values of EV(m) based on the

following specifications of the domain (SQL):

Relational package of OMG Common Warehouse

Metamodel (v1.1), DMTF CIM database

specification (v2.16), and the ontology of SQL:2003

(Baroni et al., 2005). In Table 2, we summarize the

results. For each pair of a set of specifications (M)

and a specification of the domain, we present the

lowest value, the mean value, and the highest value

of EV(m) among all the specifications in M.

We also calculated EC(MSQL) and EC(MORSQL)

based on the same specifications that we used in

case of calculating EV(m). Table 3 summarizes the

results. For each pair of a set of specifications (M)

and a specification of the domain (d), we present the

value of EC(M) that is calculated in terms of d.

The results in Table 2 and Table 3 demonstrate

that the values of measures EV(m) and EC(M)

depend on the metamodel that is used in the

calculation. The CIM database specification

specifies fewer classes (8) compared to the CWM

(24) and the SQL:2003 otnology (38). Therefore,

EC(MSQL) has relatively high value in case of the

CIM database specification.

The specifications that belong to MSQL have

bigger completeness problems compared to the

specifications that belong to MORSQL. However,

MORSQL is also not complete. For instance, the

measures in MORSQL do not consider type

constructors, domains, triggers, SQL-invoked

procedures, and sequence generators.

Table 2: Validity of measures.

 lowest mean highest

OMG Common Warehouse Metamodel (v1.1)

MSQL 0.33 0.61 1

MORSQL 0.12 0.63 1

DMTF CIM database specification (v2.16)

MSQL 0.33 0.44 0.50

MORSQL 0.12 0.54 1

The ontology of SQL:2003

MSQL 0.33 0.61 1

MORSQL 0.25 0.64 1

Table 3: Completeness of sets of measures.

 CWM CIM SQL:2003

MSQL 0.08 0.12 0.05

MORSQL 0.21 0.38 0.18

On the other hand, the specifications of measures

refer to elements that in our view do not have a

corresponding element in the used metamodels:

aggregation, arc, attribute of a table, class, complex

attribute, complex column, generalization, hierarchy,

involved class, referential path, shared class, simple

attribute, simple column, and type of complex

column.

4 CONCLUSIONS

In this paper, we proposed a new framework for
evaluating the quality of specifications of software
measures (measures in short). The novelty of this
framework (in the context of development of
measures) is that it is based on semiotics – the theory
of signs. We developed this framework by adapting
an existing semiotic framework. The existing
framework is used in order to investigate the quality
of different kinds of software entities. We proposed
how to use this framework in order to evaluate
specifications of measures. We proposed three
candidate measures for evaluating the syntactic and
semantic quality of specifications of measures.

The proposed evaluation framework has to
enhance the existing evaluation methods of
measures, which do not pay enough attention to the
quality of specifications of measures.

We also investigated two sets of specifications of

database design measures in terms of the proposed

framework as an example. These measures allow

designers to measure the design of relational and

object-relational databases that are created by using

SQL language. We evaluated the semantic quality of

these specifications in terms of different metamodels

that specify the domain of the measures (SQL). The

results demonstrate that the selection of a metamodel

affects the results of the evaluation. We found that

the syntactic and semantic quality of the

specifications is quite low.

The future work must include improvement of

the quality of measures that were proposed in the

paper. We also have to improve of the quality of

existing database design measures, develop more

database design measures, and evaluate these

measures in terms of the proposed framework.

REFERENCES

Baroni, A.L, Calero, C., Piattini, M., & Abreu, F.B., 2005.

A Formal Definition for Object-Relational Database

Metrics. In 7th International Conference on Enterprise

Information Systems.

Belle, J. P., 2006. A Framework for the Evaluation of

Business Models and its Empirical Validation.

Electronic journal of information systems evaluation,

Vol 9, Issue 1, 31-44.

Bernstein, A. P., 2003. Applying Model Management to

Classical Meta Data Problems. In Conf. on Innovative

Database Research (CIDR).

Blaha, M., 1997. Dimensions of Database Reverse

Engineering. In Fourth Working Conference on

Reverse Engineering, 176-183.

Burton-Jones, A., Storey, V.C., Sugumaran, V. &

Ahluwalia, P., 2005. A Semiotic Metrics Suite for

Assessing the Quality of Ontologies. Data &

Knowledge Engineering, Vol. 55, No. 1, 84-102

Choinzon, M.,& Ueda, Y., 2006. Design Defects in Object

Oriented Designs Using Design Metrics. In 7th Joint

Conference on Knowledge-Based Software

Engineering. IOS Press, 61-72.

Date, C. J. & Darwen, H., 2006. Databases, Types and the

Relational Model, Addison Wesley. USA, 3rd edn.

DMTF Common Information Model Standards, 2006.

CIM Schema Ver. 2.16. Database specification.

DMTF Common Information Model Standards, 2006.

CIM Schema Ver. 2.15. Metrics schema.

García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruiz,

F., Piattini, M., & Genero, M., 2006. Towards a

Consistent Terminology for Software Measurement.

Information & Software Technology, Vol. 48, 631-

644.

Greenfield, J., Short, K., Cook, S., & Kent, S., 2004.

Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools, Wiley

Publishing, Inc. Indianapolis.

IEEE Standards Dept., 1998. IEEE Std. 1061-1998,

Standard for a Software Quality Metrics Methodology.

Jacquet, J. & Abran, A., 1998. Metrics Validation

Proposals: A Structured Analysis. In Proceedings of

Eighth International Workshop of Software

Measurement.

Kaner, C., & Bond, P., 2004. Software Engineering

Metrics: What Do They Measure and How Do We

Know? In 10th International Software Metrics

Symposium.

Kitchenham, B., Pfleeger, S. & Fenton, N., 1995. Towards

a framework for software measurement validation.

IEEE Transactions on Software Engineering, Vol. 21,

Issue 12, pp 929-944.

Krogstie, J., 2001. A Semiotic Approach to Quality in

Requirements Specifications. In IFIP 8.1 Working

Conference on Organizational Semiotics, eds. Stamper

et al., Montreal, Canada, 231-249.

Krogstie, J., Sindre, G., & Jorgensen, H., 2006. Process

models representing knowledge for action: a revised

quality framework. European Journal of Information

Systems, Vol. 15, No. 1, 91–102.

Larman, C., 2002. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design

and the Unified Process, Prentice Hall. USA, 2nd edn.

Lindland, O.I., Sindre, G., & Solvberg, A., 1994.

Understanding quality in conceptual modeling. IEEE

Software, Mar. 1994, Vol. 11, Issue 2, 42-49.

Maiden, N., & Sutcliffe, A., 1992. Exploiting reusable

specifications through analogy. Communications of

ACM, Vol. 35, No. 4, 55-64.

McQuillan, J. A. & Power, J. F., 2006. Towards re-usable

measure definitions at the meta-level. In PhD

Workshop of the 20th European Conference on

Object-Oriented Programming.

Melton, J., ISO/IEC 9075-2:2003 (E) Information

technology — Database languages — SQL — Part 2:

Foundation (SQL/Foundation). August, 2003.

Merriam-Webster, Inc. Merriam-webster’s online

dictionary, viewed 25 November, 2007,

<http://www.m-w.com/>.

OMG Common Warehouse Metamodel Specification

formal/03-03-02. March 2003. Version 1.1.

Opdahl, A.L., & Henderson-Sellers, B., 2002. Ontological

Evaluation of the UML Using the Bunge–Wand–

Weber Model. Software and Systems Modeling, Vol 1,

No. 1, 43 – 67.

Piattini, M., Calero, C., & Genero, M., 2001a. Table

Oriented Metrics for Relational Databases. Software

Quality Journal, Vol. 9, No. 2, 79-97.

Piattini, M., Calero, C., Sahraoui, H., & Lounis, H.,

2001b. Object-Relational Database Metrics. L'Object,

vol. March 2001.

Schneidewind, N.F., 1992. Methodology for Validating

Software Metrics. IEEE Transactions Software

Engineering, Vol. 18, No. 5 (May 1992), 410-422.

Wismüller, R., Bubak, M., Funika, W., Arodz, T., &

Kurdziel, M., 2004. Support for User-Defined Metrics

in the Online Performance Analysis Tool G-PM. In

AxGrids 2004, LNCS Vol. 3165, 159-168.

